Expensive constraints are commonly seen in real-world engineering design. However, metamodel based design optimization (MBDO) approaches often assume inexpensive constraints. In this work, the situational adaptive Kreisselmeier and Steinhauser (SAKS) method was employed in the development of a hybrid adaptive aggregation-based constraint handling strategy for expensive black-box constraint functions. The SAKS method is a novel approach that hybridizes the modeling and aggregation of expensive constraints and adds an adaptive strategy to control the level of hybridization. The SAKS strategy was integrated with a modified trust region-based mode pursuing sampling (TRMPS) algorithm to form the SAKS-trust region optimizer (SAKS-TRO) for single-objective design optimization problems with expensive black-box objective and constraint functions. SAKS-TRO was benchmarked against five popular constrained optimizers and demonstrated superior performance on average. SAKS-TRO was also applied to optimize the design of an industrial recessed impeller.

References

References
1.
Gu
,
L.
,
2001
, “
A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis
,”
ASME
Paper No. DAC-21063.
2.
Duddeck
,
F.
,
2008
, “
Multidisciplinary Optimization of Car Bodies
,”
Struct. Multidiscip. Optim.
,
35
(
4
), pp.
375
389
.
3.
Mitchell
,
M.
,
1996
,
An Introduction to Genetic Algorithms
,
MIT Press
,
Cambridge, MA
.
4.
Bertsimas
,
D.
, and
Tsitsiklis
,
J.
,
1993
, “
Simulated Annealing
,”
Stat. Sci.
,
8
(
1
), pp.
10
15
.
5.
Poli
,
R.
,
Kennedy
,
J.
, and
Blackwell
,
T.
,
2007
, “
Particle Swarm Optimization: An Overview
,”
Swarm Intell.
,
1
(
1
), pp.
33
57
.
6.
Jones
,
D.
,
Perttunen
,
C.
, and
Stuckman
,
B.
,
1993
, “
Lipschitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
,
79
(
1
), pp.
157
181
.
7.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G.
,
2004
, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
J. Eng. Optim.
,
36
(
4
), pp.
419
438
.
8.
Cheng
,
G. H.
,
Younis
,
A.
,
Haji Hajikolaei
,
K.
, and
Wang
,
G. G.
,
2015
, “
Trust Region Based MPS Method for Global Optimization of High Dimensional Design Problems
,”
ASME. J. Mech. Des.
,
137
(
2
), p.
021407
.
9.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
10.
Wang
,
G. G.
, and
Shan
,
S.
,
2006
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
11.
Kazemi
,
M.
,
Wang
,
G. G.
,
Rahnamayan
,
S.
, and
Gupta
,
K.
,
2011
, “
Global Optimization for Problems With Expensive Objective and Constraint Functions
,”
ASME J. Mech. Des.
,
133
(
1
) , p. 014505.
12.
Homaifar
,
A.
,
Qi
,
C.
, and
Lai
,
S.
,
1994
, “
Constrained Optimization Via Genetic Algorithms
,”
Simulation
,
62
(
4
), pp.
242
254
.
13.
Joines
,
J.
, and
Houck
,
C.
,
1994
, “
On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems With GAs
,”
First IEEE Conference on Evolutionary Computation
, Orlando, FL, June 27–29, pp. 579–584.
14.
Michalewicz
,
Z.
, and
Attia
,
N.
,
1994
, “
Evolutionary Optimization of Constrained Problems
,”
Third Annual Conference on Evolutionary Programming
, San Diego, CA, Feb. 24–26.
15.
Hadj-Alouane
,
A.
, and
Bean
,
J.
,
1997
, “
A Genetic Algorithm for the Multiple-Choice Integer Program
,”
Oper. Res.
,
45
(
1
), pp.
92
101
.
16.
Tessema
,
B.
, and
Yen
,
G.
,
2006
, “
A Self Adaptive Penalty Function Based Algorithm for Constrained Optimization
,”
IEEE Congress on Evolutionary Computation
, Vancouver, BC, Canada, July 16–21, pp. 246–253.
17.
Coello
,
C.
,
2000
, “
Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems
,”
Comput. Ind.
,
41
(
2
), pp.
113
–1
27
.
18.
Holmström
,
K.
,
Quttineh
,
N.
, and
Edvall
,
M.
,
2008
, “
An Adaptive Radial Basis Algorithm (ARBF) for Expensive Black-Box Mixed-Integer Constrained Global Optimization
,”
Optim. Eng.
,
9
(
4
), pp.
311
339
.
19.
Riche
,
R.
, and
Haftka
,
R.
,
1995
, “
Improved Genetic Algorithm for Minimum Thickness Composite Laminate Design
,”
Compos. Eng.
,
5
(
2
), pp.
143
161
.
20.
Ullah
,
A.
,
Sarker
,
R.
, and
Lokan
,
C.
,
2012
, “
Handling Equality Constraints in Evolutionary Optimization
,”
Eur. J. Oper. Res.
,
221
(
3
), pp.
480
490
.
21.
Paredis
,
J.
,
1994
, “
Co-Evolutionary Constraint Satisfaction
,”
Third Conference on Parallel Problem Solving From Nature
, Jerusalem, Israel, Oct. 9–14.
22.
Parmee
,
I.
, and
Purchase
,
G.
,
1994
, “
The Development of a Directed Genetic Search Technique for Heavily Constrained Design Spaces
,”
Adaptive Computing in Engineering Design and Control '94
, Plymouth, UK, pp. 97–102.
23.
Camponogara
,
E.
, and
Talukdar
,
S.
,
1997
, “
A Genetic Algorithm for Constrained and Multiobjective Optimization
,”
Third Nordic Workshop on Genetic Algorithms and Their Applications (3NWGA)
, Vaasa, Finland, pp. 49–62.
24.
Parr
,
J.
,
Keane
,
A.
,
Forrester
,
A.
, and
Holden
,
C.
,
2012
, “
Infill Sampling Criteria for Surrogate-Based Optimization With Constraint Handling
,”
Eng. Optim.
,
44
(
10
), pp.
1147
1166
.
25.
Poon
,
N.
, and
Martins
,
J.
,
2007
, “
An Adaptive Approach to Constraint Aggregation Using Adjoint Sensitivity Analysis
,”
J. Struct. Multidiscip. Optim.
,
34
(
1
), pp.
61
73
.
26.
Wrenn
,
G.
,
1989
, “
An Indirect Method for Numerical Optimization Using the Kreisselmeier–Steinhauser Function
,” NASA Langley Research Center, Hampton, VA, Contractor Report No.
4220
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890007408.pdf
27.
Bloss
,
K. F.
,
Biegler
,
L. T.
, and
Schiesser
,
W. E.
,
1999
, “
Dynamic Process Optimization Through Adjoint Formulations and Constraint Aggregation
,”
Ind. Eng. Chem. Res.
,
38
(
2
), pp.
421
432
.
28.
Jiang
,
Z.
,
Cheng
,
G. H.
, and
Wang
,
G. G.
,
2013
, “
Mixed Discrete and Continuous Variable Optimization Based on Constraint Aggregation and Relative Sensitivity
,”
ASME
Paper No. DETC2013-12668.
29.
Kleijnen
,
J.
,
van Beers
,
W.
, and
van Nieuwenhuyse
,
I.
,
2010
, “
Constrained Optimization in Expensive Simulation: A Novel Approach
,”
Eur. J. Oper. Res.
,
202
(
1
), pp.
164
174
.
30.
Regis
,
R.
,
2011
, “
Stochastic Radial Basis Function Algorithms for Large Scale Optimization Involving Expensive Black-Box Objective and Constraint Functions
,”
J. Comput. Oper. Res.
,
38
(
5
), pp.
837
853
.
31.
Rashid
,
K.
,
Ambani
,
S.
, and
Cetinkaya
,
E.
,
2013
, “
An Adaptive Multiquadric Radial Basis Function Method for Expensive Black-Box Mixed-Integer Nonlinear Constrained Optimization
,”
Eng. Optim.
,
45
(
2
), pp.
185
206
.
32.
Basudhar
,
A.
,
Dribusch
,
C.
,
Lacaze
,
S.
, and
Missoum
,
S.
,
2012
, “
Constrained Efficient Global Optimization With Support Vector Machines
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
201
221
.
33.
Kramer
,
O.
,
2010
, “
A Review of Constraint-Handling Techniques for Evolution Strategies
,”
Appl. Comput. Intell. Soft Comput.
,
2010
, pp.
1
11
.
34.
Coello
,
C.
,
2002
, “
Theoretical and Numerical Constraint-Handling Techniques Used With Evolutionary Algorithms: A Survey of the State of the Art
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
11–12
), pp.
1245
1287
.
35.
Lucken
,
C.
,
Baran
,
B.
, and
Brizuela
,
C.
,
2014
, “
A Survey on Multi-Objective Evolutionary Algorithms for Many-Objective Problems
,”
Comput. Optim. Appl.
,
58
(
3
), pp.
707
756
.
36.
Kreisselmeier
,
G.
, and
Steinhauser
,
R.
,
1979
, “
Systematic Control Design by Optimizing a Vector Performance Index
,” IFAC Proceedings Volumes,
12
(7), pp. 113–117.
37.
Powell
,
M.
,
1987
,
Radial Basis Functions for Multivariable Interpolation: A Review of Algorithms for Approximation
,
3rd ed.
,
Clarendon Press
,
Oxford, UK
.
38.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T.
,
2001
, “
Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
39.
Chen
,
V.
,
Tsui
,
K. L.
,
Barton
,
R. R.
, and
Meckesheimer
,
M.
,
2006
, “
A Review on Design, Modeling and Applications of Computer Experiments
,”
IIE Trans.
,
38
(
4
), pp.
273
291
.
40.
Shan
,
S.
, and
Wang
,
G. G.
,
2010
, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051009
.
41.
Raspanti
,
C.
,
Bandoni
,
J.
, and
Biegler
,
L.
,
2000
, “
New Strategies for Flexibility Analysis and Design Under Uncertainty
,”
J. Comput. Chem. Eng.
,
24
(
9–10
), pp.
2193
2209
.
42.
Fu
,
J.
, and
Wang
,
L.
,
2002
, “
A Random-Discretization Based Monte Carlo Sampling Method and Its Applications
,”
Methodol. Comput. Appl. Probab.
,
4
(
1
), pp.
5
25
.
43.
Vanderplaats
,
G.
,
1973
, “
CONMIN—A Fortran Program for Constrained Function Minimization
,” NASA Ames Research Center, Moffett Field, CA, Technical Memorandum No. TM X-62282.
44.
Liuzzi
,
G.
,
Lucidi
,
S.
, and
Sciandrone
,
M.
,
2010
, “
Sequential Penalty Derivative-Free Methods for Nonlinear Constrained Optimization
,”
SIAM J. Optim.
,
20
(
5
), pp.
2614
2635
.
45.
Powell
,
M.
,
1994
, “
A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation
,”
Advances in Optimization and Numerical Analysis
,
Springer
,
Dordrecht, The Netherlands
, pp.
51
67
.
46.
Jansen
,
P.
, and
Perez
,
R.
,
2011
, “
Constrained Structural Design Optimization Via a Parallel Augmented Lagrangian Particle Swarm Optimization Approach
,”
Int. J. Comput. Struct.
,
89
(
13–14
), pp.
1352
1366
.
47.
Perez
,
R.
,
Jansen
,
P.
, and
Martins
,
J.
,
2012
, “
pyOpt: A Python-Based Object-Oriented Framework for Nonlinear Constrained Optimization
,”
Struct. Multidiscip. Optim.
,
45
(
1
), pp.
101
118
.
48.
Gjernes
,
T.
,
2014
, “
Optimization of Centrifugal Slurry Pumps Through Computational Fluid Dynamics
,”
Masters thesis
, Simon Fraser University, Burnaby, BC, Canada.http://summit.sfu.ca/item/14468
49.
Grzina, A.
,
Roudnev, A.
, and
Burgess, K. E.
,
2002
,
Slurry Pumping Manual
,
Warman International
, Glasgow, Scotland.
50.
Shah
,
S.
,
Jain
,
S.
,
Patel
,
R.
, and
Lakhera
,
V.
,
2012
, “
CFD for Centrifugal Pumps: A Review of the State-of-the-Art
,”
Chemical, Civil, and Mechanical Engineering Tracks of Third Nirma University International Conference
, Ahmedabad, India, Dec. 6--8, pp. 715–720.http://www.nuicone.org/nuicone/pdf/Nuicone2012.pdf
51.
Roudnev
,
A.
,
1999
, “
Some Aspects of Slurry Pump Design
,”
World Pumps
,
1999
(
389
), pp.
58
61
.
52.
Wilde
,
D.
,
1978
,
Globally Optimal Design
,
Wiley
,
New York
.
53.
Arora
,
J.
,
2004
,
Introduction to Optimum Design
,
Elsevier Academic Press
,
San Diego, CA
.
54.
Hock
,
W.
, and
Schittkowski
,
K.
,
1981
,
Test Examples for Nonlinear Programming Codes
,
Springer-Verlag
,
Secaucus, NJ
.
55.
Hsu
,
Y.
,
Wang
,
S.
, and
Yu
,
C.
,
2003
, “
A Sequential Approximation Method Using Neural Networks for Engineering Design Optimization Problems
,”
Eng. Optim.
,
35
(
5
), pp.
489
511
.
56.
Thanedar
,
P.
,
1995
, “
Survey of Discrete Variable Optimization for Structural Design
,”
J. Struct. Eng.
,
121
(
2
), p.
301
.
57.
Hajikolaei, K. H.
,
Pirmoradi, Z.
,
Cheng, G. H.
, and
Wang, G. G.
, 2014, “
Decomposition Based on Quantified Variable Correlations Uncovered by Metamodeling for Large Scale Global Optimization
,”
Engineering Optimization
,
47
(4), pp. 429–452.
58.
Schutte
,
J.
, and
Haftka
,
R.
,
2010
, “
Global Structural Optimization of a Stepped Cantilever Beam Using Quasi-Separable Decomposition
,”
Eng. Optim.
,
42
(
4
), pp.
347
367
.
59.
Sagar
,
A.
, and
Gadhvi
,
B.
,
2017
,
Constrained Nonlinear Optimization Problems: Formulation and Solution
,
Simon Fraser University
,
Surrey, BC, Canada
.
You do not currently have access to this content.