As a prospective machining method for cylindrical gear, gear skiving has been promoted by many commercial companies, such as Gleason, Mitsubishi, and Prawema recently. Although the principle and mathematical model for gear skiving has been discussed by many works, the tooth modification was left behind in the literature. In fact, machine kinematics correction and tooth contact analysis (TCA) are widely used for tooth modification in gear processing, such as hobbing, grinding, and milling. Focusing on this, the paper generalizes machine kinematics correction and TCA to gear skiving. The influence of the modification parameters on tooth deviation, contact path, and transmission error are all investigated, showing that localized contact pattern and polynomial transmission error can be realized through cutter offset correction for one gear and cutter tilted (or crossed angle) correction for the other gear.

References

1.
Radzevich
,
S. P.
,
2013
,
Theory of Gearing Kinematics, Geometry and Synthesis
,
CRC Press
,
Boca Raton, FL
, pp.
74
85
.
2.
Litvin
,
F. L.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge, UK
, pp.
20
25
.
3.
Dooner
,
D. B.
,
2012
,
Kinematic Geometry of Gearing
,
Wiley
,
Chichester, UK
.
4.
Pittler
,
W. V.
,
1910
, “
Verfahren Zum Schneiden Von Zahnr€Adern Mittels Eines Zahnradartigen, an Den Stirnfl€Achen Der Z€Ahne Mit Schneidkanten Versehenen Schneidwerkzeugs
,” Patent No. 243514.
5.
Kreschel
,
J.
,
2012
,
Gleason Power Skiving: Technology and Basics
,
Gleason Company Publication
,
Ludwigsburg, Germany
.
6.
Kobialka
,
C.
,
2013
,
Contemporary Gear Pre-Machining Solutions
,
Gear Solutions
, American Gear Manufacturers Association, Alexandria, VA, pp.
42
49
.
7.
Radzevich
,
S. P.
,
2010
,
Gear Cutting Tools Fundamentals of Design and Computation
,
CRC Press
,
Boca Raton, FL
, pp.
705
712
.
8.
Spath
,
D.
, and
H€uhsam
,
A.
,
2002
, “
Skiving for High-Performance Machining of Periodic Structures
,”
Ann. CIRP
,
51
(
1
), pp.
91
94
.
9.
Sugimoto
,
T.
,
Ishibashi
,
A.
, and
Yonekura
,
M.
,
2003
, “
Performance of Skiving Hobs in Finishing Induction Hardened and Carburized Gears
,”
Gear Technol.
, pp.
34
41
.https://www.geartechnology.com/articles/0503/Performance_of_Skiving_Hobs_in_Finishing_Induction_Hardened_and_Carburized_Gears/
10.
Antoniadis
,
A.
,
Vidakis
,
N.
, and
Bilalis
,
N.
,
2004
, “
A Simulation Model of Gear Skiving
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
213
220
.
11.
Bouzakis
,
K. D.
,
Lili
,
E.
,
Michailidis
,
N.
, and
Friderikos
,
O.
,
2008
, “
Manufacturing of Cylindrical Gears by Generating Cutting Processes: A Critical Synthesis of Analysis Methods
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
676
696
.
12.
Antoniadis
,
A.
,
2012
, “
Gear Skiving—CAD Simulation Approach
,”
Comput. Aided Des.
,
44
(
7
), pp.
611
616
.
13.
Chen
,
X. C.
,
Li
,
J.
, and
Lou
,
B. C.
,
2013
, “
A Study on the Design of Error-Free Spur Slice Cutter
,”
Int. J. Adv. Manuf. Technol
,
68
(
1–4
), pp.
727
738
.
14.
Moriwaki
,
I.
,
Nakamura
,
M.
,
Hasegawa
,
T.
,
Funamoto
,
M.
,
Uriu
,
K.
,
Murakami
,
T.
,
Nagata
,
E.
,
Kurita
,
N.
,
Tachikawa
,
T.
, and
Kobayashi
,
Y.
,
2013
, “
Tooth Geometry Design of Cylindrical Skiving Cutter for Internal Gears
,”
International Conference on Gears, VDI-Society for Product and Process Design
, Munich, Germany, Oct. 7–9, pp.
329
340
.
15.
Stadtfeld
,
H. J.
,
2014
, “
Power Skiving of Cylindrical Gears on Different Machine Platforms
,”
Gear Technol.
, pp.
25
62
.https://www.geartechnology.com/articles/0114/Power_Skiving_of_Cylindrical_Gears_on_Different_Machine_Platforms/
16.
Guo
,
E.
,
Hong
,
R.
,
Huang
,
X.
, and
Fang
,
C.
,
2015
, “
Research on the Cutting Mechanism of Cylindrical Gear Power Skiving
,”
Int. J. Adv. Manuf. Technol
,
79
(
1–4
), pp.
541
550
.
17.
Tachikawa
,
T.
,
Kurita
,
N.
,
Nakamura
,
M.
,
Iba
,
D.
, and
Moriwaki
,
I.
,
2015
, “
Calculation Model for Internal Gear Skiving With a Pinion-Type Cutter Having Pitch Deviation and a Run-Out
,”
ASME
Paper No. DETC2015-46402.
18.
Tsai
,
C.-Y.
,
2016
, “
Mathematical Model for Design and Analysis of Power Skiving Tool for Involute Gear Cutting
,”
Mech. Mach. Theory
,
101
, pp.
195
208
.
19.
Guo
,
Z.
,
Mao
,
S.-M.
,
Li
,
X.-E.
, and
Ren
,
Z.-Y.
,
2016
, “
Research on the Theoretical Tooth Profile Errors of Gears Machined by Skiving
,”
Mech. Mach. Theory
,
97
, pp.
1
11
.
20.
Guo
,
Z.
,
Mao
,
S.-M.
, and
Du
,
X.-F.
,
2017
, “
Influences of Tool Setting Errors on Gear Skiving Accuracy
,”
Int. J. Adv. Manuf. Technol
,
91
(
9–12
), pp.
3135
3143
.
21.
Moriwaki
,
I.
,
Osafune
,
T.
,
Nakamura
,
M.
,
Funamoto
,
M.
,
Uriu
,
K.
,
Murakami
,
T.
,
Nagata
,
E.
,
Kurita
,
N.
,
Tachikawa
,
T.
, and
Kobayashi
,
Y.
,
2017
, “
Cutting Tool Parameters of Cylindrical Skiving Cutter With Sharpening Angle for Internal Gears
,”
ASME J. Mech. Des.
,
139
(
3
), p.
033301
.
22.
Fuentes-Aznar
,
A.
, and
Gonzalez-Perez
,
I.
,
2016
, “
Mathematical Definition and Computerized Modeling of Spherical Involute and Octoidal Bevel Gears Generated by Crown Gear
,”
Mech. Mach. Theory
,
106
, pp, pp.
94
11496
.
23.
Fuentes
,
A.
,
Iserte
,
J. L.
,
Gonzalez-Perez
,
I.
, and
Sanchez-Marin
,
F. T.
,
2011
, “
Computerized Design of Advanced Straight and Skew Bevel Gears Produced by Precision Forging
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
29–32
), pp.
2363
2377
.
24.
Fan
,
Q.
,
2006
, “
Enhanced Algorithms of Contact Simulation for Hypoid Gear Drives Produced by Face-Milling and Face-Hobbing Processes
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
31
37
.
25.
Fan
,
Q.
,
DaFoe
,
R.
, and
Swanger
,
J.
,
2008
, “
Higher-Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072601
.
26.
Simon
,
V.
,
2014
, “
Optimal Machine-Tool Settings for the Manufacture of Face-Hobbed Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081004
.
27.
Simon
,
V.
,
2010
, “
Advanced Manufacture of Spiral Bevel Gear on CNC Hypoid Generating Machine
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031001
.
28.
Shih
,
Y.-P.
, and
Fong
,
Z. H.
,
2006
, “
Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1294
1302
.
29.
Fong, Z. H., 2000, “
Mathematical Model of Universal Hypoid Generator With Supplemental Kinematic Flank Correction Motions
,”
ASME J. Mech. Des.
,
122
(1), pp. 136–142.
30.
Zheng
,
F.
,
Hua
,
L.
,
Chen
,
D.-F.
, and
Han
,
X.
,
2016
, “
Generation of Non-Circular Spiral Bevel Gears by Face-Milling Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081013
.
31.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
, and
Chen
,
D.-F.
,
2016
, “
Generation of Non-Circular Bevel Gears With Free-Form Tooth Profile and Tooth Lengthwise Based on Screw Theory
,”
ASME J. Mech. Des.
,
138
(
8
), p.
064501
.
32.
Zheng
,
F.
,
Xinghui
,
H.
,
Hua
,
L.
,
Zhang
,
M.
, and
Zhang
,
W.
,
2018
, “
Design and Manufacture of New Type of Non-Circular Cylindrical Gear Generated by Face-Milling Method
,”
Mech. Mach. Theory
,
122
, pp.
326
346
.
33.
Hsu
,
R.-H.
, and
Su
,
H.-H.
,
2014
, “
Tooth Contact Analysis for Helical Gear Pairs Generated by a Modified Hob With Variable Tooth Thickness
,”
Mech. Mach. Theory
,
71
, pp.
40
51
.
34.
Tran
,
V.-T.
,
Hsu
,
R.-H.
, and
Tsay
,
C.-B.
,
2015
, “
Tooth Contact Analysis for a Double-Crowned Involute Helical Gear With Twist-Free Tooth Flanks Generated by Dual-Lead Hob Cutters
,”
ASME J. Mech. Des.
,
137
(
5
), p.
052601
.
35.
Tseng
,
J.-T.
, and
Tsay
,
C.-B.
,
2005
, “
Mathematical Model and Surface Deviation of Cylindrical Gears With Curvilinear Shaped Teeth Cut by a Hob Cutter
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
982
987
.
36.
Shih
,
Y.-P.
, and
Chen
,
S.-D.
,
2012
, “
Free-Form Flank Correction in Helical Gear Grinding Using a Five-Axis Computer Numerical Control Gear Profile Grinding Machine
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041006
.
37.
Shih
,
Y.-P.
, and
Chen
,
S.-D.
,
2012
, “
A Flank Correction Methodology for a Five-Axis CNC Gear Profile Grinding Machine
,”
Mech. Mach. Theory
,
47
, pp.
31
45
.
38.
Huang
,
C.-L.
, and
Fong
,
Z.-H.
,
2011
, “
Modified-Roll Profile Correction for a Gear Shaping Cutter Made by the Lengthwise-Reciprocating Grinding Process
,”
ASME J. Mech. Des.
,
133
(
4
), p.
041001
.
39.
Zheng
,
F.
,
Hua
,
L.
,
Han
,
X.
,
Li
,
B.
, and
Chen
,
D.
,
2016
, “
Linkage Model and Manufacturing Process of Shaping Non-Circular Gears
,”
Mech. Mach. Theory
,
96
, pp.
192
212
.
40.
Zheng
,
F.
,
Guo
,
X.
, and
Zhang
,
M.
,
2018
, “
Non-Uniform Flank Rolling Measurement for Shaped Noncircular Gears
,”
Measurements
,
116
, pp.
207
215
.
41.
Zheng
,
F.
,
Hua
,
L.
, and
Han
,
X.
,
2016
, “
The Mathematical Model and Mechanical Properties of Variable Center Distance Gears Based on Screw Theory
,”
Mech. Mach. Theory
,
101
, pp.
116
139
.
42.
Zheng
,
F.
,
Guo
,
X.
,
Zhang
,
M.
, and
Zhang
,
W.
,
2018
, “
Research on the Mold Release Motion for Spiral Bevel Gear Forging
,”
Int. J. Mech. Sci.
,
136
, pp.
482
492
.
You do not currently have access to this content.