In our previous work, we designed a three-degrees-of-freedom (3DOF) translational parallel mechanism based on a proposed design strategy. In this paper, the design strategy is further improved, and a novel spatial translation mechanism (STM) is found. The novel STM consists of a platform, a base, and six modules between the platform and the base. Each module is a passive planar 6R single-loop closed chain, and it is connected with two other modules. Meanwhile, three modules are connected to the base, and the other three modules are connected to the platform. All the connections among the modules, platform, and base are realized by revolute joints. There are no obvious limbs in the mechanism due to the complex connections. The mobility of the STM is analyzed, and the forward kinematics is investigated. To validate the effectiveness and feasibility of the design, one prototype is fabricated. At the end of the paper, we draw some conclusions and discuss the future works.

References

1.
Pierrot
,
F.
,
Marquet
,
F.
,
Company
,
O.
, and
Gil
,
T.
,
2001
, “
H4 Parallel Robot: Modeling, Design and Preliminary Experiments
,”
IEEE International Conference on Robotics and Automation
(
ICRA
),
Seoul, South Korea
, May 21–26, pp.
3256
3261
.
2.
Pierrot
,
F.
,
Reynaud
,
C.
, and
Fournier
,
A.
,
1990
, “
Delta: A Simple and Efficient Parallel Robot
,”
Robotica
,
8
(
2
), pp.
105
109
.
3.
Laribi
,
M.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2007
, “
Analysis and Dimensional Synthesis of the Delta Robot for a Prescribed Workspace
,”
Mech. Mach. Theory
,
42
(
7
), pp.
859
870
.
4.
Courteille
,
E.
,
Deblaise
,
D.
, and
Maurine
,
P.
,
2009
, “
Design Optimization of a Delta-Like Parallel Robot Through Global Stiffness Performance Evaluation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
,
St. Louis, MO
, Oct. 10–15, pp.
5159
5166
.
5.
Kelaiaia
,
R.
,
Company
,
O.
, and
Zaatri
,
A.
,
2012
, “
Multiobjective Optimization of a Linear Delta Parallel Robot
,”
Mech. Mach. Theory
,
50
, pp.
159
178
.
6.
Li
,
Y.
, and
Xu
,
Q.
,
2005
, “
Dynamic Analysis of a Modified DELTA Parallel Robot for Cardiopulmonary Resuscitation
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
, Aug. 2–6, pp.
233
238
.
7.
Yoon
,
W.-K.
,
Suehiro
,
T.
,
Tsumaki
,
Y.
, and
Uchiyama
,
M.
,
2004
, “
Stiffness Analysis and Design of a Compact Modified Delta Parallel Mechanism
,”
Robotica
,
22
(
4
), pp.
463
475
.
8.
Arata
,
J.
,
Kondo
,
H.
,
Sakaguchi
,
M.
, and
Fujimoto
,
H.
,
2009
, “
Development of a Haptic Device Delta-4 Using Parallel Link Mechanism
,”
IEEE International Conference on Robotics and Automation
(
ICRA'09
),
Kobe
,
Japan
, May 12–17, pp.
294
300
.
10.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2002
, “
Type Synthesis of Linear Translational Parallel Manipulators
,” Advances in Robot Kinematics,
Springer
,
Dordrecht, The Netherlands
, pp.
453
462
.
11.
Briot
,
S.
, and
Bonev
,
I. A.
,
2009
, “
Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications
,”
ASME J. Mech. Rob.
,
1
(
2
), pp.
795
810
.
12.
Briot
,
S.
, and
Arakelian
,
V.
,
2009
, “
Complete Shaking Force and Shaking Moment Balancing of the Position-Orientation Decoupled Paminsa Manipulator
,”
IEEE/ASME
International Conference on Advanced Intelligent Mechatronics
, Singapore, July 14–17, pp.
1521
1526
.
13.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
,
2002
, “
Singularity-Free Fully-Isotropic Translational Parallel Manipulators
,”
ASME
Paper No. DETC2002/MECH-34323.
14.
Zeng
,
D.
,
Huang
,
Z.
, and
Lu
,
W.
,
2008
, “
Performance Analysis and Optimal Design of a 3DOF 3-Prur Parallel Mechanism
,”
ASME J. Mech. Des.
,
130
(
4
), pp.
506
508
.
15.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
,
2003
, “
Position Analysis of a New Family of 3-DOF Translational Parallel Manipulators
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
316
322
.
16.
Gogu
,
G.
,
2004
, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots Via Theory of Linear Transformations
,”
Eur. J. Mech. - A/Solids
,
23
(
6
), pp.
1021
1039
.
17.
Han
,
S. K.
, and
Tsai
,
L. W.
,
2002
, “
Evaluation of a Cartesian Parallel Manipulator
,” Advances in Robot Kinematics,
Springer
,
Dordrecht, The Netherlands
, pp.
21
28
.
18.
Hervé
,
J.
, and
Sparacino
,
F.
,
1991
, “
Structural Synthesis of Parallel Robots Generating Spatial Translation
,”
Fifth IEEE International Conference on Advanced Robotics
, Pisa, Italy, June 19–22, pp.
808
813
.
19.
Yu
,
J.
,
Dai
,
J. S.
,
Bi
,
S.
, and
Zong
,
G.
,
2008
, “
Numeration and Type Synthesis of 3-DOF Orthogonal Translational Parallel Manipulators
,”
Prog. Nat. Sci.
,
18
(
5
), pp.
563
574
.
20.
Tsai
,
L.-W.
,
1996
, “
Kinematics of a Three-Dof Platform With Three Extensible Limbs
,”
Recent Advances in Robot Kinematics
,
Springer
,
Dordrecht, The Netherlands
, pp.
401
410
.
21.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
,
1998
, “
A Translational 3-Dof Parallel Manipulator
,”
Advances in Robot Kinematics: Analysis and Control
,
Springer
,
Dordrecht, The Netherlands
, pp.
49
58
.
22.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
,
2002
, “
Mobility Analysis of the 3-Upu Parallel Mechanism Assembled for a Pure Translational Motion
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
259
264
.
23.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2002
, “
Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator
,”
Int. J. Rob. Res.
,
21
(
9
), pp.
791
798
.
24.
Chablat
,
D.
, and
Wenger
,
P.
,
2003
, “
Architecture Optimization of a 3-Dof Translational Parallel Mechanism for Machining Applications, the Orthoglide
,”
IEEE Trans. Rob. Autom.
,
19
(
3
), pp.
403
410
.
25.
Lou
,
Y.
, and
Li
,
Z.
,
2006
, “
A Novel 3-DOF Purely Translational Parallel Mechanism
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
,
Beijing, China
, Oct. 9–15, pp.
2144
2149
.
26.
Liu
,
X.-J.
,
il Jeong
,
J.
, and
Kim
,
J.
,
2003
, “
A Three Translational DOFs Parallel Cube-Manipulator
,”
Robotica
,
21
(
6
), pp.
645
653
.
27.
Li
,
Y.
, and
Xu
,
Q.
,
2006
, “
Kinematic Analysis and Design of a New 3-DOF Translational Parallel Manipulator
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
729
737
.
28.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2014
, “
Constraint-Plane-Based Synthesis and Topology Variation of a Class of Metamorphic Parallel Mechanisms
,”
J. Mech. Sci. Technol.
,
28
(
10
), pp.
4179
4191
.
29.
Li
,
W.
,
Gao
,
F.
, and
Zhang
,
J.
,
2005
, “
A Three-DOF Translational Manipulator With Decoupled Geometry
,”
Robotica
,
23
(
6
), pp.
805
808
.
30.
Romdhane
,
L.
,
Affi
,
Z.
, and
Fayet
,
M.
,
2002
, “
Design and Singularity Analysis of a 3-Translational-Dof in-Parallel Manipulator
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
419
426
.
31.
Ding
,
H.
,
Cao
,
W.-A.
,
Chen
,
Z.
, and
Kecskeméthy
,
A.
,
2015
, “
Structural Synthesis of Two-Layer and Two-Loop Spatial Mechanisms With Coupling Chains
,”
Mech. Mach. Theory
,
92
, pp.
289
313
.
32.
Petrescu
,
F. I. T.
, and
Petrescu
,
R. V. V.
,
2015
, “
Kinematics at the Main Mechanism of a Railbound Forging Manipulator
,”
Indep. J. Manage. Prod.
,
6
(
3
), pp.
711
729
.
33.
Wei
,
G.
,
Ding
,
X.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
.
34.
Laliberté
,
T.
, and
Gosselin
,
C. M.
,
2007
, “
Polyhedra With Articulated Faces
,”
12th IFToMM World Congress
, Besançon, France, June 18–21, pp.
17
21
.https://www.researchgate.net/publication/228664704_Polyhedra_with_Articulated_Faces
35.
Agrawal
,
S. K.
,
Kumar
,
S.
, and
Yim
,
M.
,
2002
, “
Polyhedral Single Degree-of-Freedom Expanding Structures: Design and Prototypes
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
473
478
.
36.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
37.
Laliberté
,
T.
, and
Gosselin
,
C.
,
2014
, “
Construction, Mobility Analysis and Synthesis of Polyhedra With Articulated Faces
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011007
.
38.
Yu
,
W.
,
Wang
,
H.
, and
Chen
,
G.
,
2018
, “
Design and Kinematic Analysis of a 3-Translational-DOF Spatial Parallel Mechanism Based on Polyhedra
,”
Mech. Mach. Theory
,
121
, pp.
92
115
.
39.
Tian
,
C.
,
Fang
,
Y.
, and
Guo
,
S.
,
2016
, “
Structural Synthesis of a Class of 2r2t Hybrid Mechanisms
,”
Chin. J. Mech. Eng.
,
29
(
4
), pp.
703
709
.
40.
Huang
,
Z.
, and
Li
,
Q.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
145
.
41.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
42.
Dai
,
J.
,
2014
, Geometrical Foundations and Screw Algebra for Mechanisms and Robotics,
Higher Education Press
,
Beijing, China
.
43.
Tarjan
,
R.
,
1972
, “
Depth-First Search and Linear Graph Algorithms
,”
SIAM J. Comput.
,
1
(
2
), pp.
146
160
.
44.
Chen
,
G.
,
Wang
,
H.
,
Lin
,
Z.
, and
Lai
,
X.
,
2017
, “
Identification of Canonical Basis of Screw Systems Using General-Special Decomposition
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
034501
.
45.
Gogu
,
G.
,
2005
, “
Chebychev-Grübler-Kutzbach's Criterion for Mobility Calculation of Multi-Loop Mechanisms Revisited Via Theory of Linear Transformations
,”
Eur. J. Mech. - A/Solids
,
24
(
3
), pp.
427
441
.
46.
Wu
,
J.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2010
, “
Interactive Dimensional Synthesis and Motion Design of Planar 6R Closed Chains Via Constraint Manifold Modification
,”
ASME J. Mech. Rob.
,
2
(
3
), pp.
615
625
.
You do not currently have access to this content.