Constant-force mechanisms are designed to keep a constant or nearly constant input force along a prescribed stroke of the mechanism. The implementation of this kind of mechanisms has been approached in literature using compliant mechanisms or through a certain combination of springs and nonlinear transmissions. In this work, three new constant-force mechanisms based on the use of springs, rollers, and cams are presented and analyzed. The rolling friction forces between the rollers and the cam are included in the force equilibrium equations and considered in the integration of the cam profile. The influence of the friction force on the input force as well as the design parameters involved is studied based on numerical techniques and simulations. In fact, the results evidence that to obtain a precise constant-force mechanism, rolling friction forces must be considered in the cam profile definition. The main design guidelines for the three constant-force mechanisms proposed are described.

References

References
1.
Wall
,
A.
,
1963
,
Mechanical Springs
,
2nd ed.
,
McGraw-Hill
,
New York
.
2.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
3.
Bidgoly
,
H.
,
Ahmadabadi
,
M.
, and
Zakerzadeh
,
M.
,
2016
, “
Design and Modeling of a Compact Rotational Nonlinear Spring
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Daejeon, South Korea, Oct. 9–14, pp.
4356
4361
.
4.
Howell
,
L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
5.
Howell
,
L.
,
2001
,
Comliant Mechanisms
,
Wiley
,
New York
.
6.
Gallego
,
J.
, and
Herder
,
J.
,
2010
, “
Classification for Literature on Compliant Mechanisms: A Design Methodology Based Approach
,”
ASME
Paper No. DETC2009-87334.
7.
Tolman
,
K.
,
Merriam
,
E.
, and
Howell
,
L.
,
2016
, “
Compliant Constant-Force Linear-Motion Mechanism
,”
Mech. Mach. Theory
,
106
, pp.
68
79
.
8.
Lamers
,
A.
,
Gallego Snchez
,
J.
, and
Herder
,
J.
,
2015
, “
Design of a Statically Balanced Fully Compliant Grasper
,”
Mech. Mach. Theory
,
92
, pp.
230
239
.
9.
Boyle
,
C.
,
Howell
,
L.
,
Magleby
,
S.
, and
Evans
,
M.
,
2003
, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1469
1487
.
10.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Constant-Force Bistable Mechanism for Force Regulation and Overload Protection
,”
Mech. Mach. Theory
,
46
(
7
), pp.
899
909
.
11.
Meaders
,
J.
, and
Mattson
,
C.
,
2010
, “
Optimization of Near-Constant Force Springs Subject to Mating Uncertainty
,”
Struct. Multidiscip. Optim.
,
41
(
1
), pp.
1
15
.
12.
Prakashah
,
H.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064503
.
13.
Pedersen
,
C.
,
Fleck
,
N.
, and
Ananthasuresh
,
G.
,
2006
, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1101
1112
.
14.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p. 031005.
15.
Liu
,
Y.
,
Zhang
,
Y.
, and
Xu
,
Q.
,
2017
, “
Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams
,”
IEEE/ASME Trans. Mechatronics
,
22
(
1
), pp.
476
486
.
16.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design of a Flexure-Based Constant-Force Xy Precision Positioning Stage
,”
Mech. Mach. Theory
,
108
, pp.
1
13
.
17.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
.
18.
Qiu
,
J.
,
Lang
,
J.
, and
Slocum
,
A.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
19.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.
20.
Starostin
,
E.
,
1987
, “
Calculating a Cam Profile for a Constant-Force Mechanism
,”
Sov. Mach. Sci.
,
4
, pp.
69
76
.https://www.researchgate.net/publication/257505307_Calculating_a_cam_profile_for_a_constant-force_mechanism
21.
Duval
,
E.
,
2010
, “
Dual Pulley Constant Force Mechanism
,” U.S. Patent No.
7,677,540
.https://patents.google.com/patent/US7677540
22.
Riley
,
R.
, and
Carey
,
D.
,
1980
, “
Exercise Machine With Spring-Cam Arrangement for Equalizing the Force Required Through the Exercise Stroke
,” U.S. Patent No. 4,231,568.
23.
Schepelmann
,
A.
,
Geberth
,
K.
, and
Geyer
,
H.
,
2014
, “
Compact Nonlinear Springs With User Defined Torque-Deflection Profiles for Series Elastic Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
3411
3416
.
24.
Schmit
,
N.
, and
Okada
,
M.
,
2011
, “
Synthesis of a Non-Circular Cable Spool to Realize a Nonlinear Rotational Spring
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
762
767
.
25.
Endo
,
G.
,
Yamada
,
H.
,
Yajima
,
A.
,
Ogata
,
M.
, and
Hirose
,
S.
,
2010
, “
A Passive Weight Compensation Mechanism With a Non-Circular Pulley and a Spring
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp.
3843
3848
.
26.
Liu
,
Y.
,
Yu
,
D.-P.
, and
Yao
,
J.
,
2016
, “
Design of an Adjustable Cam Based Constant Force Mechanism
,”
Mech. Mach. Theory
,
103
, pp.
85
97
.
27.
Liu
,
Y.
,
Li
,
D.-J.
,
Yu
,
D.-P.
,
Miao
,
J.-G.
, and
Yao
,
J.
,
2017
, “
Design of a Curved Surface Constant Force Mechanism
,”
Mech. Based Des. Struct. Mach.
,
45
(
2
), pp.
160
172
.
28.
Wang
,
S.
, and
Zhao
,
R.
,
2015
, “
Constant-Force Cylinder Experiment With Low-Gravity Simulation
,”
Aircr. Eng. Aerosp. Technol.
,
87
(
4
), pp.
376
379
.
29.
Berselli
,
G.
,
Vertechy
,
R.
,
Vassura
,
G.
, and
Castelli
,
V.
,
2009
, “
Design of a Single-Acting Constant-Force Actuator Based on Dielectric Elastomers
,”
ASME J. Mech. Rob.
,
1
(
3
), pp.
1
6
.
30.
Nathan
,
R.
,
1985
, “
A Constant Force Generation Mechanism
,”
ASME J. Mech. Des.
,
107
(
4
), pp.
508
512
.
31.
Howell
,
L.
, and
Magleby
,
S.
,
2006
, “
Substantially Constant-Force Exercise Machine
,” Brigham Young University, Provo, UT, U.S. Patent No.
7,060,012
.https://patents.google.com/patent/US7060012B2/en
32.
Smith
,
D.
,
2005
, “
Resistive Exercise Device
,” National Aeronautics and Space Administration (NASA), Washington, DC, U.S. Patent No.
6,958,032
.https://patents.google.com/patent/US6958032B1/en
33.
Colosky
,
P.
, and
Ruttley
,
T.
,
2004
, “
Gravity-Independent Constant Force Resistive Exercise Unit
,” U.S. Patent No.
6,685,602
.https://patents.google.com/patent/US6685602
34.
Lan
,
C.-C.
, and
Wang
,
J.-Y.
,
2011
, “
Design of Adjustable Constant-Force Forceps for Robot-Assisted Surgical Manipulation
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
386
391
.
35.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.
36.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design and Testing of a Flexure-Based Constant-Force Stage for Biological Cell Micromanipulation
,”
IEEE Trans. Autom. Sci. Eng.
, in press.
37.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
Design of a Constant-Force Snap-Fit Mechanism for Minimal Mating Uncertainty
,”
Mech. Mach. Theory
,
55
, pp.
34
50
.
38.
Li-Jun
,
Z.
,
Tao
,
L.
, and
Bao-Yu
,
S.
,
2008
, “
Optimum Design of Automobile Diaphragm Spring Clutch
,”
IEEE Vehicle Power and Propulsion Conference
(
VPPC
), Harbin, China, Sept. 3–5, pp.
1
4
.
39.
Weight
,
B.
,
Mattson
,
C.
,
Magleby
,
S.
, and
Howell
,
L.
,
2007
, “
Configuration Selection, Modeling, and Preliminary Testing in Support of Constant Force Electrical Connectors
,”
ASME J. Electron. Packag.
,
129
(
3
), pp.
236
246
.
40.
Committee
,
A. I. H.
,
1992
,
ASM Handbook
, Vol.
18
,
ASM International
, Materials Park, OH.
41.
Stoer
,
J.
, and
Bulirsch
,
R.
,
2002
,
Introduction to Numerical Analysis
,
3rd ed.
,
Springer
,
New York
.
You do not currently have access to this content.