Flasher, which has been used in space engineering, is a class of origami patterns. After modifying and introducing cuts for the flasher pattern, we add nonzero thickness to the flasher and taper its panels. We find that, if appropriately driven, the modified flasher can be used as the deployable mechanism, and even envelop the curved surface in its unfolded configuration. We establish a geometric model and a kinematic model for the mechanism. Then we propose a designing approach including folding design and driving method. The folding design, which ensures that the mechanism can be folded in the folded configuration, is based on geometric constraints. The driving method, which enables the multi-degree-of-freedom (DOF) mechanism to deploy in sequence with only one actuator, is based on underactuation. A prototype is built to validate this approach.

References

References
1.
Guest
,
S.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
First International Seminar on Structural Morphology
, Montpellier, France, Sept. 7–11, pp.
203
215
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.568.2635&rep=rep1&type=pdf
2.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
3.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L. L.
,
2016
, “
Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031005
.
4.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
5.
Guest
,
S.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.
6.
Tibbalds
,
B.
,
Guest
,
S.
, and
Pellegrino
,
S.
,
2004
, “
Inextensional Packaging of Thin Shell Slit Reflectors
,”
Tech. Mech.
,
24
(3–4), pp.
211
220
.http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2004_Heft3_4/pellegrino.pdf
7.
Tachi
,
T.
,
2011
, “
Rigid Foldable Thick Origami
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
CRC Press
,
Boca Raton, FL
, pp.
253
264
.
8.
Edmondson
,
B. J.
,
Lang
,
R. J.
, and
Magleby
,
S. P.
,
2014
, “
An Offset Panel Technique for Thick Rigidly Foldable Origami
,”
ASME
Paper No. DETC2014-35606.
9.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
10.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
.
11.
Yan
,
C.
,
Feng
,
H.
,
Ma
,
J.
,
Rui
,
P.
, and
Zhong
,
Y.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A
,
472
(
2190
), p.
20150846
.
12.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
13.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
Single-Vertex Multicrease Rigid Origami With Nonzero Thickness and Its Transformation Into Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011010
.
14.
Gutro, R.
,
2014
, “
The Amazing Anatomy of James Webb Space Telescope Mirrors
,” National Aeronautics and Space Administration, Washington, DC, accessed Mar. 20, 2014, https://www.nasa.gov/content/goddard/the-amazing-anatomy-of-james-webb-space-telescope-mirrors/
15.
Arenberg
,
J.
,
Gilman
,
L.
,
Abbruzze
,
N.
,
Reuter
,
J.
,
Anderson
,
K.
,
Jahic
,
J.
,
Yacoub
,
J.
,
Padilla
,
H.
,
Atkinson
,
C.
,
Moon
,
D.
,
Patton
,
K.
,
May
,
P.
,
York
,
J.
,
Messer
,
T.
,
Backovsky
,
S.
,
Tucker
,
J.
,
Harvey
,
C.
,
Eegholm
,
B.
,
Zukowski
,
B.
, and
Blake
,
P.
,
2006
, “
The JWST Backplane Stability Test Article: A Critical Technology Demonstration
,”
Proc. SPIE.
,
6265
, p.
62650Q-1
.
16.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2008
,
Underactuated Robotic Hands
,
Springer-Verlag
,
Berlin
, Chap. 3.
17.
Yeow
,
C. H.
,
Baisch
,
A.
,
Howe
,
R.
,
Talbot
,
S.
, and
Walsh
,
C.
,
2012
, “
Differential Spring Stiffness Design for Finger Therapy Exercise Device: Bio-Inspired From Stiff Pathological Finger Joints
,”
ASME J. Med. Devices
,
6
(
1
), p.
017538
.
18.
Firouzeh
,
A.
,
Salerno
,
M.
, and
Paik
,
J.
,
2017
, “
Stiffness Control With Shape Memory Polymer in Underactuated Robotic Origamis
,”
IEEE Trans. Rob.
,
33
(
4
), pp.
765
777
.
You do not currently have access to this content.