Reliability assessment is an important procedure in engineering design in which the probability of failure or equivalently the probability of survival is computed based on appropriate design criteria and model behavior. In this paper, a new approximate and efficient reliability assessment method is proposed: the conditional probability method (CPM). Focus is set on computational efficiency and the proposed method is applied to classical load-strength structural reliability problems. The core of the approach is in the computation of the probability of failure starting from the conditional probability of failure given the load. The number of function evaluations to compute the probability of failure is a priori known to be 3n + 2 in CPM, where n is the number of stochastic design variables excluding the strength. The necessary number of function evaluations for the reliability assessment, which may correspond to expensive computations, is therefore substantially lower in CPM than in the existing structural reliability methods such as the widely used first-order reliability method (FORM).

References

References
1.
Lemaire
,
M.
,
2009
,
Structural Reliability
,
Wiley
,
Hoboken, NJ
.
2.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
,
1986
,
Methods of Structural Safety
,
Prentice Hall
,
Englewood Cliffs, NJ
.
3.
Balu
,
A. S.
, and
Rao
,
B. N.
,
2014
, “
Efficient Assessment of Structural Reliability in Presence of Random and Fuzzy Uncertainties
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051008
.
4.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
.
5.
Zhao
,
Y.
, and
Ono
,
T.
,
1999
, “
New Approximations for SORM—Part 1
,”
J. Eng. Mech.
,
125
(
1
), pp.
79
85
.
6.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
7.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
,
2005
, “
First-Order Approximation Methods in Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
851
857
.
8.
Dersjo
,
T.
, and
Olsson
,
M.
,
2011
, “
Reliability Based Design Optimization Using a Single Constraint Approximation Point
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031006
.
9.
Aoues
,
Y.
, and
Chateauneuf
,
A.
,
2010
, “
Benchmark Study of Numerical Methods for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
41
(
2
), pp.
277
294
.
10.
Breitung
,
K.
,
1984
, “
Asymptotic Approximations for Multi-Normal Integrals
,”
J. Eng. Mech. Div.
,
110
(
3
), pp.
357
366
.
11.
Tvedt
,
L.
,
1983
, “
Two Second-Order Approximations to the Failure Probability-Section on Structural Reliability
,” A/S Veritas Research, Hovik, Norway, Report No. RDIV/20-004-83.
12.
Cai
,
G. Q.
, and
Elishakoff
,
I.
,
1994
, “
Refined Second-Order Reliability Analysis
,”
Struct. Saf.
,
14
(
4
), pp.
267
276
.
13.
Koyluoglu
,
H. U.
, and
Nielsen
,
S. R. K.
,
1994
, “
New Approximations for SORM Integrals
,”
Struct. Saf.
,
13
(
4
), pp.
235
246
.
14.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
,
1981
, “
Non-Normal Dependent Vectors in Structural Safety
,”
J. Eng. Mech. Div.
,
107
(
6
), pp.
1127
1138
.
15.
Mansour
,
R.
, and
Olsson
,
M.
,
2014
, “
A Closed-Form Second-Order Reliability Method Using Noncentral Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101402
.
16.
Lee
,
I.
,
Noh
,
Y.
, and
Yoo
,
D.
,
2012
, “
A Novel Second Order Reliability Method (SORM) Using Noncentral or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100912
.
17.
Mansour
,
R.
, and
Olsson
,
M.
,
2016
, “
Response Surface Single Loop Reliability-Based Design Optimization With Higher Order Reliability Assessment
,”
Struct. Multidiscip. Optim.
,
54
(
1
), pp.
63
79
.
18.
Hu
,
Z.
, and
Du
,
X.
,
2018
, “
Saddlepoint Approximation Reliability Method for Quadratic Functions in Normal Variables
,”
Struct. Saf.
,
71
, pp.
24
32
.
19.
Papaioannou
,
I.
,
Papadimitriou
,
C.
, and
Straub
,
D.
,
2016
, “
Sequential Importance Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
62
, pp.
66
75
.
20.
Sundar
,
V. S.
, and
Shields
,
M. D.
,
2016
, “
Surrogate-Enhanced Stochastic Search Algorithms to Identify Implicitly Defined Functions for Reliability Analysis
,”
Struct. Saf.
,
62
, pp.
1
11
.
21.
Au
,
S. K.
,
Ching
,
J.
, and
Beck
,
J. L.
,
2007
, “
Application of Subset Simulation Methods to Reliability Benchmark Problems
,”
Struct. Saf.
,
29
(
3
), pp.
183
193
.
22.
Meng
,
D.
,
Li
,
Y. L.
,
Huang
,
H.-Z.
,
Wang
,
Z.
, and
Liu
,
Y.
,
2015
, “
Reliability-Based Multidisciplinary Design Optimization Using Subset Simulation Analysis and Its Application in the Hydraulic Transmission Mechanism Design
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051402
.
23.
Holtz
,
M.
,
2011
,
Sparse Grid Quadrature in High Dimensions With Applications in Finance and Insurance
,
Springer-Verlag
,
Berlin
.
24.
Eldred
,
M. S.
, and
Burkardt
,
J.
,
2009
, “
Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification
,”
AIAA Paper No. 2009-976
.
25.
Kameshwar
,
S.
, and
Chakraborty
,
A.
,
2013
, “
On Reliability Evaluation of Structures Using Hermite Polynomial Chaos
,”
International Symposium on Engineering Under Uncertainty: Safety Assessment and Management
, pp.
1141
1152
.
26.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
27.
Hasofer
,
A. M.
, and
Lind
,
N. C.
,
1974
, “
Exact and Invariant Second Moment Code Format
,”
J. Eng. Mech. Div.
,
100
(
1
), pp.
111
121
.
28.
Wang
,
L.
, and
Grandhi
,
R. V.
,
1995
, “
Structural Reliability Optimization Using an Efficient Safety Index Calculation Procedure
,”
Int. J. Numer. Methods Eng.
,
38
(
10
), pp.
1721
1738
.
29.
Wang
,
L.
, and
Grandhi
,
R. V.
,
1995
, “
Improved Two-Point Function Approximations for Design Optimization
,”
AIAA J.
,
33
(
9
), pp.
1720
1727
.
30.
Wu
,
Y.-T.
, and
Wirsching
,
P. H.
,
1987
, “
New Algorithm for Structural Reliability Estimation
,”
J. Eng. Mech.
,
9
(
9
), pp.
1319
1336
.
31.
Wirsching
,
P. H.
,
Torng
,
T. Y.
, and
Martin
,
W.
,
1991
, “
Advanced Fatigue Reliability Analysis
,”
Int. J. Fatigue
,
13
(
5
), pp.
389
394
.
32.
Sacks
,
J.
,
Welch
,
W. J.
,
J
,
M. T.
, and
P
,
W. H.
,
1989
, “
Design and Analysis of Computer Experiments. statistical Science
,”
Stat. Sci.
,
4
, pp.
409
435
.
33.
Wu
,
Y.-T.
, and
Wirsching
,
P. H.
,
1992
, “
Kriging, Cokriging, Radial Basis Functions and the Role of Positive Definiteness
,”
Comput. Math. Appl.
,
24
(
12
), pp.
139
148
.
34.
Wild
,
S.
,
Regis
,
R.
, and
Shoemaker
,
C.
,
2008
, “
Orbit: Optimization by Radial Basis Function Interpolation in Trust-Regions
,”
SIAM J. Sci. Comput.
,
30
(
6
), pp.
3197
3219
.
35.
Amouzgar
,
K.
, and
Stromberg
,
N.
,
2017
, “
Radial Basis Functions as Surrogate Models With a Priori Bias in Comparison With a Posteriori Bias
,”
Struct. Multidiscip. Optim.
,
55
(
4
), pp.
1453
1469
.
36.
Choi
,
S.-K.
,
Grandhi
,
R.
, and
Canfield
,
R.
,
2007
,
Reliability-Based Structural Design
,
Springer-Verlag
,
London
.
37.
Valdebenito
,
M. A.
, and
Schuëller
,
G. I.
,
2010
, “
A Survey on Approaches for Reliability-Based Optimization
,”
Struct. Multidiscip. Optim.
,
42
(
5
), pp.
645
663
.
38.
Du
,
X.
,
2005
, “
Probabilistic Engineering Design
,”
Missouri University of Science and Technology
,
Rolla, MO
.
39.
Hurtado
,
J. E.
,
Alvarez
,
D. A.
, and
Paredes
,
J. A.
,
2017
, “
Interval Reliability Analysis Under the Specification of Statistical Information on the Input Variables
,”
Struct. Saf.
,
65
, pp.
35
48
.
40.
Wormsen
,
A.
, and
Haerkegaard
,
G.
,
2004
, “
A Statistical Investigation of Fatigue Behaviour According to Weibull's Weakest Link Theory
,”
European Conference on Fracture
(ECF15)
,
Stockholm
,
Sweden
, Aug. 11–13.http://www.gruppofrattura.it/ocs/index.php/esis/ECF15/paper/viewFile/8634/4706
41.
Sandberg
,
D.
,
Mansour
,
R.
, and
Olsson
,
M.
,
2017
, “
Fatigue Probability Assessment Including Aleatory and Epistemic Uncertainty With Application to Gas Turbine Compressor Blades
,”
Int. J. Fatigue
,
95
, pp.
132
142
.
42.
Faber
,
M. H.
,
2005
, “
On the Treatment of Uncertainties and Probabilities in Engineering Decision Analysis
,”
ASME J. Offshore Mech. Arct. Eng.
,
127
(
3
), pp.
243
248
.
43.
Kiureghian
,
A. D.
,
1989
, “
Measures of Structural Safety Under Imperfect States of Knowledge
,”
J. Struct. Eng.
,
115
(
5
), pp.
1119
1140
.
44.
Kostov
,
M.
,
2000
, “
Seismic Fragility Analyses (Case Study)
,”
Regional Workshop on External Events PSA
, Sofia, Bulgaria, Nov. 6–10.http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/34/014/34014809.pdf
You do not currently have access to this content.