Modeling and simulation for additive manufacturing (AM) is commonly used in industry. Nevertheless, a central issue remaining is the integration of different models focusing on different objectives and targeting different levels of details. The objective of this work is to increase the prediction capability of characteristics and performances of additively manufactured parts and to co-design parts and processes. The paper contributes to this field of research by integrating part's performance model and additive technology process model into a single early integrated model. The paper uses the dimensional analysis conceptual modeling (DACM) framework in an AM perspective to generate causal graphs integrating the AM equipment and the part to be printed. DACM offers the possibility of integrating existing knowledge in the model. The framework supported by a computer tool produces a set of governing equations representing the relationships among the influencing variables of the integrated model. The systematic identification of the weaknesses and contradictions in the system and qualitative simulation of the system are some of the potential uses of the model. Ultimately, it is a way to create better designs of machines and parts, to control and qualify the manufacturing process, and to control three-dimensional (3D) printing processes. The DACM framework is tested on two cases of a 3D printer using the fused filament fabrication (FFF) powder bed fusion. The analysis, applied to the global system formed of the 3D printer and the part, illustrates the existence of contradictions. The analysis supports the early redesign of both parts and AM process (equipment) and later optimization of the control parameters.

References

References
1.
Francois
,
M. M.
,
Sun
,
A.
,
King
,
W. E.
,
Henson
,
N. J.
,
Tourret
,
D.
,
Bronkhorst
,
C. A.
,
Carlson
,
N. N.
,
Newman
,
C. K.
,
Haut
,
T. S.
,
Bakosi
,
J.
, and
Gibbs
,
J. W.
,
2017
, “
Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
4
), pp.
198
206
.
2.
Wohlers, T. T.
, 2015, “
Wohlers Report 2015: Additive Manufacturing State of the Inudstry: Annual Worldwide Progress Report
,” Wohlers Associates, Fort Collins, CO, accessed May 16, 2018, https://wohlersassociates.com/state-of-the-industry-reports.html
3.
Witherell
,
P.
,
Feng
,
S.
,
Simpson
,
T. W.
,
Saint John
,
D. B.
,
Michaleris
,
P.
,
Liu
,
Z. K.
,
Chen
,
L. Q.
, and
Martukanitz
,
R.
,
2014
, “
Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061025
.
4.
Coatanéa
,
E.
,
Roca
,
R.
,
Mokhtarian
,
H.
,
Mokammel
,
F.
, and
Ikkala
,
K.
,
2016
, “
A Conceptual Modeling and Simulation Framework for System Design
,”
Comput. Sci. Eng.
,
18
(
4
), pp.
42
52
.
5.
Mokhtarian
,
H.
,
Coatanéa
,
E.
,
Paris
,
H.
,
Ritola
,
T.
,
Ellman
,
A.
,
Vihinen
,
J.
,
Koskinen
,
K.
, and
Ikkala
,
K.
,
2016
, “
A Network Based Modelling Approach Using the Dimensional Analysis Conceptual Modeling (DACM) Framework for Additive Manufacturing Technologies
,”
ASME
Paper No. DETC2016-60473.
6.
Wu
,
D.
,
Coatanea
,
E.
, and
Wang
,
G. G.
,
2017
, “
Dimension Reduction and Decomposition Using Causal Graph and Qualitative Analysis for Aircraft Concept Design Optimization
,”
ASME
Paper No. DETC2017-67601.
7.
Mokhtarian
,
H.
,
Coatanéa
,
E.
, and
Paris
,
H.
,
2017
, “
Function Modeling Combined With Physics-Based Reasoning for Assessing Design Options and Supporting Innovative Ideation
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
31
(
4
), pp.
476
500
.
8.
Anderson
,
D. M.
,
2004
,
Design for Manufacturability & Concurrent Engineering: How to Design for Low Cost, Design in High Quality, Design for Lean Manufacture, and Design Quickly for Fast Production
,
CIM Press
, CA.
9.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
737
760
.
10.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
, Springer Science & Business Media, New York, pp.
17
40
.
11.
Yang
,
S.
, and
Zhao
,
Y. F.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
, pp.
327
342.
12.
ASTM International
, 2016, “
Standard Guidelines for Design for Additive Manufacturing
,” ASTM International, West Conshohocken, PA, ASTM Standard No.
ISO/ASTM52910-17
.
13.
Adam
,
G. A. O.
, and
Zimmer
,
D.
,
2014
, “
CIRP Journal of Manufacturing Science and Technology Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
.
14.
Klahn
,
C.
,
Singer
,
D.
, and
Meboldt
,
M.
,
2016
, “
Design Guidelines for Additive Manufactured Snap-Fit Joints
,”
Procedia CIRP
,
50
, pp.
264
269
.
15.
Boyard
,
N.
,
Rivette
,
M.
,
Christmann
,
O.
, and
Richir
,
S.
,
2013
, “
A Design Methodology for Parts Using Additive Manufacturing
,”
High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Sixth International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, Oct. 1–15, pp. 399–404.https://www.researchgate.net/publication/282863835_A_design_methodology_for_parts_using_Additive_Manufacturing
16.
Ponche
,
R.
,
Hascoet
,
J. Y.
,
Kerbrat
,
O.
, and
Mognol
,
P.
,
2012
, “
A New Global Approach to Design for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
7
(
2
), pp.
93
105
.
17.
Ponche
,
R.
,
Kerbrat
,
O.
,
Mognol
,
P.
, and
Hascoet
,
J. Y.
,
2014
, “
A Novel Methodology of Design for Additive Manufacturing Applied to Additive Laser Manufacturing Process
,”
Rob. Comput. Integr. Manuf.
,
30
(
4
), pp.
389
398
.
18.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
, pp.
632
637
.
19.
Dinar
,
M.
, and
Rosen
,
D. W.
,
2016
, “
A Design for Additive Manufacturing Ontology
,”
ASME
Paper No. DETC2016-60196.
20.
Rezaie
,
R.
,
Badrossamay
,
M.
,
Ghaie
,
A.
, and
Moosavi
,
H.
,
2013
, “
Topology Optimization for Fused Deposition Modeling Process
,”
Procedia-Soc. Behav. Sci.
,
6
, pp.
521
526
.
21.
Yan
,
C.
,
Hao
,
L.
,
Hussein
,
A.
, and
Raymont
,
D.
,
2012
, “
Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Mach. Tools Manuf.
,
62
, pp.
32
38
.
22.
Kurth
,
J.
,
1991
, “
Material Increase Manufacturing by Rapid Prototyping Techniques
,”
CIRP Ann. Technol.
,
40
(
2
), pp.
603
614
.
23.
Pham
,
D. T.
, and
Gault
,
R.
,
1998
, “
A Comparison of Rapid Prototyping Technologies
,”
Int. J. Mach. Tools Manuf.
,
38
(
10–11
), pp.
1257
1287
.
24.
Williams
,
C. B.
,
Mistree
,
F.
, and
Rosen
,
D. W.
,
2011
, “
A Functional Classification Framework for the Conceptual Design of Additive Manufacturing Technologies
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121002
.
25.
Zwicky
,
F.
,
1967
, “
The Morphological Approach to Discovery, Invention, Research and Construction
,”
New Methods of Thought and Procedure
,
Springer-Verlag
,
New York
, pp.
273
297
.
26.
ASME
,
2006
, “
Guide for Verification and Validation in Computational Solid Mechanics
,” American Society of Mechanical Engineers, New York.
27.
Coatanéa
,
E.
, 2015, “
Dimensional Analysis Conceptual Modelling (DACM): A Comprehensive Framework for Specifying, Validating, and Analyzing System Models From a Model-Based System Engineering Perspective
,” U.S. Department of Defence, NAWCTSD Office, Washington, DC, Contract Reference: SOW 4.5, 4.5.1.
28.
Välimäki
,
E.
,
Mokhtarian
,
H.
,
Vihinen
,
J.
, and
Coatanéa
,
E.
, 2016, "Modeling of the Process Influencing Cold Metal Transfer (CMT): Development of an Approach Based in Causal Networks," First Annual SMACC Research Seminar, Tampere, Finland.
29.
Hirtz
,
J.
,
Stone
,
R. B.
,
Mcadams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
.
30.
Paynter
,
H. M.
, 1961,
Analysis and Design of Engineering Systems
,
MIT Press
,
Cambridge, UK
.
31.
Shim, T.
,
2002
,
Introduction to Physical System Modelling Using Bond Graphs
,
University of Michigan-Dearborn
, Dearborn, MI.
32.
Hatchuel
,
A.
, and
Weil
,
B.
,
2003
, “
A New Approach of Innovative Design: An Introduction to C-K Theory
,” 14th International Conference on Engineering Design (
ICED 03
), Stockholm, Sweden, Aug. 19–21, pp. 1–15.https://pdfs.semanticscholar.org/8772/8ca2aa4b77621356e5d3e1ba086d801ab022.pdf
33.
Coatanéa
,
E.
,
2005
,
Conceptual Modelling of Life Cycle Design
,
University of Aalto
, Helsinki, Finland.
34.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems
,
Wiley
, Hoboken, NJ.
35.
Bridgman
,
P. W.
,
1969
, “
Dimensional Analysis
,”
Encyclopaedia Britannica
,
Encyclopaedia Britannica
,
Chicago, IL
, pp.
439
449
.
36.
Barenblatt
,
G. I.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics
,
Cambridge University Press
,
Cambridge, UK
.
37.
Bhaskar
,
R.
, and
Nigam
,
A.
,
1990
, “
Qualitative Physics Using Dimensional Analysis
,”
Artif. Intell.
,
45
(
1–2
), pp.
73
111
.
38.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer Science & Business Media
,
London
.
39.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
, and
Gu
,
P.
,
2004
, “
Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process
,”
J. Manuf. Processes
,
6
(
2
), pp.
170
178
.
40.
Sun
,
Q.
,
Rizvi
,
G.
,
Bellehumeur
,
C.
, and
Gu
,
P.
,
2013
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid Prototyping J.
,
14
(
2
), pp.
72
80
.
41.
Yardmci
,
A.
,
1999
, “
Process Analysis and Development for Fused Deposition
,” Ph.D. dissertation, University of Illinois at Chicago, Chicago, IL.
42.
Bellini
,
A.
, Guceri, S., and
Bertoldi
,
M.
,
2004
, “
Liquefier Dynamics in Fused Deposition
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
237
246
.
43.
Yardmci
,
A.
,
Hattori
,
T.
,
Guceri
,
I.
, and
Danforth
,
S.
,
1997
, “
Thermal Analysis of Fused Deposition
,”
Solid Freeform Fabrication Conference
, Austin, TX, pp.
689
698
.
44.
Nikzad
,
M.
,
Masood
,
S. H.
,
Sbarski
,
I.
, and
Groth
,
A.
,
2009
, “
A Study of Melt Flow Analysis of an ABS-Iron Composite in Fused Deposition Modelling Process
,”
Tsinghua Sci. Technol.
,
14
(
S1
), pp.
29
37.
45.
Jerez-Mesa
,
R.
,
Travieso-Rodriguez
,
J. A.
,
Corbella
,
X.
,
Busqué
,
R.
, and
Gomez-Gras
,
G.
,
2016
, “
Finite Element Analysis of the Thermal Behavior of a RepRap 3D Printer Liquefie
,”
Mechatronics
,
36
, pp.
119
126
.
46.
Béraud
,
N.
,
Vignat
,
F.
,
Villeneuve
,
F.
, and
Dendievel
,
R.
,
2014
, “
New Trajectories in Electron Beam Melting Manufacturing to Reduce Curling Effect
,”
Procedia CIRP
,
17
, pp.
738
743
.
47.
Tounsi
,
R.
, and
Vignat
,
F.
,
2017
, “
New Concept of Support Structures in Electron Beam Melting Manufacturing to Reduce Geomtricdefects
,”
15e Colloque National AIP-Priméca
, pp.
1
6
.
48.
Altshuller
,
G. S.
,
1999
,
The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity
,
Technical Innovation Center
, Worcester, MA.
You do not currently have access to this content.