Classical mechanical watch plain bearing pivots have frictional losses limiting the quality factor of the hairspring-balance wheel oscillator. Replacement by flexure pivots leads to a drastic reduction in friction and an order of magnitude increase in quality factor. However, flexure pivots have drawbacks including gravity sensitivity, nonlinearity, and limited stroke. This paper analyzes these issues in the case of the cross-spring flexure pivot (CSFP) and presents an improved version addressing them. We first show that the cross-spring pivot cannot be simultaneously linear, insensitive to gravity, and have a long stroke: the 10 ppm accuracy required for mechanical watches holds independently of orientation with respect to gravity only when the leaf springs cross at 12.7% of their length. But in this case, the pivot is nonlinear and the stroke is only 30% of the symmetrical (50% crossing) cross-spring pivot's stroke. The symmetrical pivot is also unsatisfactory as its gravity sensitivity is of order 104 ppm. This paper introduces the codifferential concept which we show is gravity-insensitive. It is used to construct a gravity-insensitive flexure pivot (GIFP) consisting of a main rigid body, two codifferentials, and a torsional beam. We show that this novel pivot achieves linearity or the maximum stroke of symmetrical pivots while retaining gravity insensitivity.

References

References
1.
Privat-Deschanel
,
P.
, and
Focillon
,
A.
,
1877
,
Dictionnaire Général Des Sciences Techniques Et Appliquées
,
Garnier Frères
,
Paris, France
.
2.
Barrot
,
F.
,
Dubochet
,
O.
,
Henein
,
S.
,
Genequand
,
P.
,
Giriens
,
L.
,
Kjelberg
,
I.
,
Renevey
,
P.
,
Schwab
,
P.
,
Ganny
,
F.
, and
Hamaguchi
,
T.
,
2014
, “
Un Nouveau Régulateur Mécanique Pour une Réserve de Marche Exceptionnelle
,”
Actes de la Journée d'Etude de la Société Suisse de Chronométrie
, pp.
43
48
.
3.
Bateman
,
D. A.
,
1977–1978
, “
Vibration Theory and Clocks
,”
Horological J.
,
120–121
(
Pt. 7
).
4.
Eastman
,
F. S.
,
1935
,
Flexure Pivots to Replace Knife Edges and Ball Bearings, an Adaptation of Beam-Column Analysis
(Experiment Station series),
University of Washington, University of Washington, Seattle, WA
.
5.
Eastman
,
F. S.
,
1937
, “
The Design of Flexure Pivots
,”
J. Aeronaut. Sci.
,
5
(
1
), pp.
16
21
.
6.
Wittrick
,
W. H.
,
1951
, “
The Properties of Crossed Flexure Pivots, and the Influence of the Point at Which the Strips Cross
,”
Aeronaut. Q.
,
2
(
4
), pp.
272
292
.
7.
Henein
,
S.
, and
Kjelberg
,
I.
,
2015
, “
Timepiece Oscillator
,” Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland, U.S. Patent No.
9207641B2
.https://patents.google.com/patent/US9207641
8.
Kahrobaiyan
,
M.
,
Rubbert
,
L.
,
Vardi
,
I.
, and
Henein
,
S.
,
2016
, “
Gravity Insensitive Flexure Pivots for Watch Oscillators
,”
Actes du Congrès International de Chronométrie
, Montreux, Switzerland, pp.
49
55
.
9.
Hongzhe
,
Z.
,
Dong
,
H.
, and
Shusheng
,
B.
,
2017
, “
Modeling and Analysis of a Precise Multibeam Flexural Pivot
,”
ASME J. Mech. Des.
,
139
(
8
), p.
081402
.
10.
Merriam
,
E. G.
, and
Howell
,
L. L.
,
2016
, “
Lattice Flexures: Geometries for Stiffness Reduction of Blade Flexures
,”
Precis. Eng.
,
45
, pp.
160
167
.
11.
Cosandier
,
F.
,
Henein
,
S.
,
Richard
,
M.
, and
Rubbert
,
L.
,
2017
,
The Art of Flexure Mechanism Design
,
EPFL Press
,
Lausanne, Switzerland
.
12.
ANSYS, 2017, “ANSYS® Workbench, Release 18.1, ANSYS Workbench User's Guide,” ANSYS, Inc., Canonsburg, PA.
13.
Awtar
,
S.
,
Slocum
,
H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
14.
Plainevaux
,
J. E.
,
1956
, “
Etude des Déformations d'une Lame de Suspension Élastique
,”
Nuovo Cimento
,
4
(
4
), pp.
922
928
.
15.
Hongzhe
,
Z.
, and
Shusheng
,
B.
,
2010
, “
Stiffness and Stress Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
3
), pp.
378
391
.
16.
Hongzhe
,
Z.
, and
Shusheng
,
B.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
17.
Graham
,
R. L.
,
Knuth
,
D. E.
, and
Patashnik
,
O.
,
1989
,
Concrete Mathematics
,
Addison Wesley
,
Reading, MA
.
18.
Haringx
,
J. A.
,
1949
, “
The Cross-Spring Pivot as a Constructional Element
,”
Appl. Sci. Res.
,
1
(
1
), pp.
313
332
.
You do not currently have access to this content.