In this paper, a microsystem with prescribed functional capabilities is designed and simulated. In particular, the development of a straight line path generator micro electro mechanical system (MEMS) device is presented. A new procedure is suggested for avoiding branch or circuit problems in the kinematic synthesis problem. Then, Ball's point detection is used to validate the obtained pseudo-rigid body model (PRBM). A compliant MEMS device is obtained from the PRBM through the rigid-body replacement method by making use of conjugate surfaces flexure hinges (CSFHs). Finally, the functional capability of the device is investigated by means of finite element analysis (FEA) simulations and experimental testing at the macroscale.

References

References
1.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N. P.
,
2017
, “
A Comprehensive Survey on Microgrippers Design: Mechanical Structure
,”
ASME J. Mech. Des.
,
139
(
6
), p.
060801
.
2.
Dochshanov
,
A.
,
Verotti
,
M.
, and
Belfiore
,
N. P.
,
2017
, “
A Comprehensive Survey on Microgrippers Design: Operational Strategy
,”
ASME J. Mech. Des.
,
139
(
7
), p.
070801
.
3.
Verotti
,
M.
,
Crescenzi
,
R.
,
Balucani
,
M.
, and
Belfiore
,
N.
,
2015
, “
MEMS-Based Conjugate Surfaces Flexure Hinge
,”
ASME J. Mech. Des.
,
137
(
1
), p.
012301
.
4.
Arthur
,
G.
, and
Erdman
,
E.
,
1993
,
Modern Kinematics: Developments in the Last Forty Years
(Wiley Series in Design Engineering),
Wiley
, New York.
5.
Kempe
,
A. B.
,
1875
, “
On a General Method of Describing Plane Curves of the Nth Degree by Linkwork
,”
Proc. London Math. Soc.
,
s1–7
(
1
), pp.
213
216
.
6.
Burmester
,
L.
,
1888
,
Lehrbuch Der Kinematik
,
Leipzig
,
Germany
.
7.
Krause
,
M.
,
1910
, “
Zur Theorie der ebenen ähnlich veränderlichen Systeme
,” Jahresber. d. Deutschen Mathematiker-Vereinigung 19, pp. 327–329.
8.
Grubler
,
M.
,
1917
,
Getriebelehre, Eine Theorie Des Zwanglaufes Und Der Ebenen Mechanismen
,
Springer-Verlag
, Berlin.
9.
Alt
,
H.
,
1921
, “
Zur Synthese Der Ebenen Mechanismen
,”
ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech.
,
1
(
5
), pp.
373
398
.
10.
Denavit
,
J.
, and
Hartenberg, R. S.
,
1960
, “
Approximate Synthesis of Spatial Linkages
,”
ASME J. Appl. Mech.
,
27
(
1
), pp.
201
206
.
11.
Roth
,
B.
, and
Freudenstein
,
F.
,
1963
, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME J. Eng. Ind.
,
85
(
3
), pp.
298
304
.
12.
McLarnan
,
C. W.
,
1968
, “
On Linkage Synthesis With Minimum Error
,”
J. Mech.
,
3
(
2
), pp.
101
105
.
13.
Fox
,
R. L.
, and
Gupta
,
K. C.
,
1973
, “
Optimization Technology as Applied to Mechanism Design
,”
ASME J. Eng. Ind.
,
95
(
2
), pp.
657
663
.
14.
Root
,
R. R.
, and
Ragsdell
,
K. M.
,
1976
, “
A Survey of Optimization Methods Applied to the Design of Mechanisms
,”
ASME J. Eng. Ind.
,
98
(
3
), pp.
1036
1041
.
15.
Erdman
,
A. G.
,
1985
, “
Computer-Aided Design of Mechanisms: 1984 and Beyond
,”
Mech. Mach. Theory
,
20
(
4
), pp.
245
249
.
16.
Mariappan
,
J.
, and
Krishnamurty
,
S.
,
1996
, “
A Generalized Exact Gradient Method for Mechanism Synthesis
,”
Mech. Mach. Theory
,
31
(
4
), pp.
413
421
.
17.
Vallejo
,
J.
,
Avil
,
R.
,
Hernández
,
A.
, and
Amezua
,
E.
,
1995
, “
Nonlinear Optimization of Planar Linkages for Kinematic Syntheses
,”
Mech. Mach. Theory
,
30
(
4
), pp.
501
518
.
18.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061005
.
19.
Venkataraman
,
S. C.
,
Kinzel
,
G. L.
, and
Waldron
,
K. J.
,
1992
, “
Optimal Synthesis of Four-Bar Linkages for Four-Position Rigid-Body Guidance With Selective Tolerance Specifications
,”
22nd Biennial Mechanisms Conference
, Scottsdale, AZ, Sept. 13–16, pp.
651
659
.
20.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1967
, “
Synthesis of Plane Linkages With Use of the Displacement Matrix
,”
ASME J. Eng. Ind.
,
89
(
2
), pp.
206
214
.
21.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.
22.
Filemon
,
E.
,
1972
, “
Useful Ranges of Centerpoint Curves for Design of Crank-and-Rocker Linkages
,”
Mech. Mach. Theory
,
7
(
1
), pp.
47
53
.
23.
Kohli
,
D.
,
Cheng
,
J.-C.
, and
Tsai
,
K.
,
1994
, “
Assemblability, Circuits, Branches, Locking Positions, and Rotatability of Input Links of Mechanisms With Four Closures
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
92
98
.
24.
Bawab
,
S.
,
Kinzel
,
G. L.
, and
Waldron
,
K. J.
,
1992
, “
Rectified Synthesis of Coupler-Driven Four-Bar Mechanisms for Four-Position Motion Generation
,” Am. Soc. Mech. Eng., Des. Eng. Div.,
46
, pp.
147
155
.
25.
Cheng
,
J.-C.
, and
Kohli
,
D.
,
1992
, “
Synthesis of Mechanics Including Circuit Defects, Branch Defects and Input-Crank Rotatability
,” 22nd Biennial Mechanisms Conference, Scottsdale, AZ, Sept. 13–16, pp.
111
119
.
26.
Mirth
,
J. A.
,
1994
, “
General Order Criteria for the Precision Position Synthesis of Single Degree-of-Freedom Planar Linkages
,” ASME Design Technical Conference, Mechanism Synthesis and Analysis, DE-Vol. 70, pp.
245
252
.
27.
Ting
,
K.-L.
, and
Dou
,
X.
,
1994
, “
Branch, Mobility Criteria, and Classification of RSSR and Other Bimodal Linkages
,” ASME Design Technical Conference, Mechanism Synthesis and Analysis, DE-Vol. 7, pp.
303
310
.
28.
Holte
,
J. E.
, and
Chase
,
T. R.
,
1995
, “
Branching and Immovable Configurations
,” ASME Design Engineering Technical Conference, Boston, MA, Sept. 17–20, pp.
861
866
.
29.
Beloiu
,
A.
, and
Gupta
,
K.
,
1997
, “
A Unified Approach for the Investigation of Branch and Circuit Defects
,”
Mech. Mach. Theory
,
32
(
5
), pp.
539
557
.
30.
Gupta
,
K.
, and
Beloiu
,
A.
,
1998
, “
Branch and Circuit Defect Elimination in Spherical Four-Bar Linkages
,”
Mech. Mach. Theory
,
33
(
5
), pp.
491
504
.
31.
Hwang
,
W.-M.
, and
Chen
,
Y.-J.
,
2008
, “
Defect-Free Synthesis of Stephenson-Iii Motion Generators
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
12
), pp.
2485
2494
.
32.
Perkins
,
D. A.
, and
Murray
,
A. P.
,
2011
, “
Synthesis of Coupler-Drivers for Four Position Planar Synthesis Tasks
,”
ASME
Paper No. DETC2011-48170.
33.
Sardashti
,
A.
,
Daniali
,
H.
, and
Varedi
,
S.
,
2013
, “
Optimal Free-Defect Synthesis of Four-Bar Linkage With Joint Clearance Using PSO Algorithm
,”
Meccanica
,
48
(
7
), pp.
1681
1693
.
34.
Shen
,
Q.
,
Lee
,
W.-T.
, and
Russell
,
K.
,
2015
, “
On Adjustable Planar Four-Bar Motion Generation With Order, Branch and Circuit Defect Rectification
,”
ASME J. Mech. Rob.
,
7
(
3
), p. 034501.
35.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N. P.
,
2017
, “
Compliance Synthesis of CSFH MEMS-Based Microgrippers
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022301
.
36.
Bagolini
,
A.
,
Ronchin
,
S.
,
Bellutti
,
P.
,
Chist
,
M.
,
Verotti
,
M.
, and
Belfiore
,
N. P.
,
2017
, “
Fabrication of Novel Mems Microgrippers by Deep Reactive Ion Etching With Metal Hard Mask
,”
J. Microelectromech. Syst.
,
26
(
4
), pp.
926
934
.
37.
Belfiore
,
N.
,
Broggiato
,
G.
,
Verotti
,
M.
,
Balucani
,
M.
,
Crescenzi
,
R.
,
Bagolini
,
A.
,
Bellutti
,
P.
, and
Boscardin
,
M.
,
2015
, “
Simulation and Construction of a MEMS CSFH Based Microgripper
,”
Int. J. Mech. Control
,
16
(
1
), pp.
21
30
.https://www.researchgate.net/publication/283532930_Simulation_and_construction_of_a_MEMS_CSFH_based_microgripper
38.
Cecchi
,
R.
,
Verotti
,
M.
,
Capata
,
R.
,
Dochshanov
,
A.
,
Broggiato
,
G.
,
Crescenzi
,
R.
,
Balucani
,
M.
,
Natali
,
S.
,
Razzano
,
G.
,
Lucchese
,
F.
,
Bagolini
,
A.
,
Bellutti
,
P.
,
Sciubba
,
E.
, and
Belfiore
,
N.
,
2015
, “
Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison
,”
Micromachines
,
6
(
11
), pp.
1710
1728
.
39.
Di Giamberardino
,
P.
,
Bagolini
,
A.
,
Bellutti
,
P.
,
Rudas
,
I. J.
,
Verotti
,
M.
,
Botta
,
F.
, and
Belfiore
,
N. P.
,
2017
, “
New MEMS Tweezers for the Viscoelastic Characterization of Soft Materials at the Microscale
,”
Micromachines
,
9
(
1
), p.
15
.
40.
Pennestrì
,
E.
, and
Belfiore
,
N. P.
,
1995
, “
On the Numerical Computation of Generalized Burmester Points
,”
Meccanica
,
30
(
2
), pp.
147
153
.
41.
Pennestrì
,
E.
, and
Belfiore
,
N. P.
,
1994
, “
Modular Third-Order Analysis of Planar Linkages With Applications
,” American Society of Mechanical Engineers, Design Engineering Division (Publication) DE,
70
(Pt 1), pp. 99–103.
42.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1996
,
Numerical Recipes in C
, Vol.
2
,
Cambridge University Press
,
Cambridge, UK
.
43.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
44.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
, Chichester, UK.
45.
Verotti
,
M.
,
2016
, “
Analysis of the Center of Rotation in Primitive Flexures: Uniform Cantilever Beams With Constant Curvature
,”
Mech. Mach. Theory
,
97
, pp.
29
50
.
46.
Verotti
,
M.
,
2018
, “
Effect of Initial Curvature in Uniform Flexures on Position Accuracy
,”
Mech. Mach. Theory
,
119
, pp.
106
118
.
47.
Hopcroft
,
M. A.
,
Nix
,
W. D.
, and
Kenny
,
T. W.
,
2010
, “
What is the Young's Modulus of Silicon?
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
229
238
.
48.
Yeh
,
J. A.
,
Chen
,
C.-N.
, and
Lui
,
Y.-S.
,
2004
, “
Large Rotation Actuated by In-Plane Rotary Comb-Drives With Serpentine Spring Suspension
,”
J. Micromech. Microeng.
,
15
(
1
), p.
201
.
49.
Ghosh
,
A.
, and
Corves
,
B.
,
2016
,
Introduction to Micromechanisms and Microactuators
,
Springer
, New Delhi, India.
50.
Petersen
,
K. E.
,
1982
, “
Silicon as a Mechanical Material
,”
Proc. IEEE
,
70
(
5
), pp.
420
457
.
You do not currently have access to this content.