System reliability assessment is a challenging task when using computationally intensive models. In this work, a radial-based centralized Kriging method (RCKM) is proposed for achieving high efficiency and accuracy. The method contains two components: Kriging-based system most probable point (MPP) search and radial-based centralized sampling. The former searches for the system MPP by progressively updating Kriging models regardless of the nonlinearity of the performance functions. The latter refines the Kriging models with the training points (TPs) collected from pregenerated samples. It concentrates the sampling in the important high-probability density region. Both components utilize a composite criterion to identify the critical Kriging models for system failure. The final Kriging models are sufficiently accurate only at those sections of the limit states that bound the system failure region. Its efficiency and accuracy are demonstrated via application to three examples.

References

References
1.
Lin
,
Y. H.
,
Li
,
Y. F.
, and
Zio
,
E.
,
2016
, “
A Reliability Assessment Framework for Systems With Degradation Dependency by Combining Binary Decision Diagrams and Monte Carlo Simulation
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
46
(
11
), pp.
1556
1564
.
2.
Huang
,
B.
, and
Du
,
X.
,
2008
, “
Probabilistic Uncertainty Analysis by Mean-Value First Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
325
336
.
3.
Hu
,
Z.
, and
Du
,
X.
,
2014
, “
Lifetime Cost Optimization With Time-Dependent Reliability
,”
Eng. Optim.
,
46
(
10
), pp.
1389
1410
.
4.
Li
,
D. Q.
,
Jiang
,
S. H.
,
Wu
,
S. B.
,
Zhou
,
C. B.
, and
Zhang
,
L. M.
,
2013
, “
Modeling Multivariate Distributions Using Monte Carlo Simulation for Structural Reliability Analysis With Complex Performance Function
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab.
,
227
(
2
), pp.
109
118
.
5.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
.
6.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
1
21
.
7.
Lee
,
I.
,
Noh
,
Y.
, and
Yoo
,
D.
,
2012
, “
A Novel Second-Order Reliability Method (SORM) Using Noncentral or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100912
.
8.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
9.
Wang
,
Y.
,
Zeng
,
S.
, and
Guo
,
J.
,
2013
, “
Time-Dependent Reliability-Based Design Optimization Utilizing Nonintrusive Polynomial Chaos
,”
J. Appl. Math.
,
2013
, p.
513261
.
10.
Du
,
X.
, and
Sudjianto
,
A.
,
2004
, “
First Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.
11.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
12.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
13.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
14.
Bucher
,
C. G.
,
1988
, “
Adaptive Sampling—An Iterative Fast Monte Carlo Procedure
,”
Struct. Saf.
,
5
(
2
), pp.
119
126
.
15.
Bichon
,
B. J.
,
McFarland
,
J. M.
, and
Mahadevan
,
S.
,
2011
, “
Efficient Surrogate Models for Reliability Analysis of Systems With Multiple Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
96
(
10
), pp.
1386
1395
.
16.
Ditlevsen
,
O.
,
1979
, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
,
7
(
4
), pp.
453
472
.
17.
Song
,
J.
, and
Der Kiureghian
,
A.
,
2003
, “
Bounds on System Reliability by Linear Programming
,”
J. Eng. Mech.
,
129
(
6
), pp.
627
636
.
18.
Wang
,
P.
,
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
A Generalized Complementary Intersection Method (GCIM) for System Reliability Analysis
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071003
.
19.
Youn
,
B. D.
, and
Wang
,
P.
,
2009
, “
Complementary Intersection Method for System Reliability Analysis
,”
ASME J. Mech. Des.
,
131
(
4
), p.
041004
.
20.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
An Integrated Performance Measure Approach for System Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021406
.
21.
Fauriat
,
W.
, and
Gayton
,
N.
,
2014
, “
AK-SYS: An Adaptation of the AK-MCS Method for System Reliability
,”
Reliab. Eng. Syst. Saf.
,
123
, pp.
137
144
.
22.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
.
23.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
AMSE J. Mech. Des.
,
138
(
6
), p.
061406
.
24.
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2005
, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
,
43
(
4
), pp.
853
863
.
25.
Hu
,
Z.
, and
Du
,
X.
,
2015
, “
Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051401
.
26.
Gablonsky
,
J.
,
1998
, “
An Implementation of the DIRECT Algorithm
,” North Carolina State University, Raleigh, NC, Technical Report No. CRSC-TR98-29.
27.
Echard
,
B.
,
Gayton
,
N.
,
Lemaire
,
M.
, and
Relun
,
N.
,
2013
, “
A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities With Time-Demanding Numerical Models
,”
Reliab. Eng. Syst. Saf.
,
111
(
2
), pp.
232
240
.
28.
Au
,
S. K.
, and
Beck
,
J. L.
,
1999
, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Saf.
,
21
(
2
), pp.
135
158
.
29.
Harbitz
,
A.
,
1986
, “
An Efficient Sampling Method for Probability of Failure Calculation
,”
Struct. Saf.
,
3
(
2
), pp.
109
115
.
30.
Grooteman
,
F.
,
2008
, “
Adaptive Radial-Based Importance Sampling Method for Structural Reliability
,”
Struct. Saf.
,
30
(
6
), pp.
533
542
.
31.
Lophaven
,
S.
,
Nielsen
,
H.
, and
Sondergaard
,
J.
,
2002
, “
DACE, a Matlab Kriging Toolbox, Version 2.0
,” Technical University of Denmark, Lyngby, Denmark, Technical Report No.
IMM-TR-2002-12
.http://orbit.dtu.dk/en/publications/dace--a-matlab-kriging-toolbox-version-20(4988653d-4fc7-4ecb-a82e-62bfe44b0fd1)/export.html
32.
McAllister
,
C. D.
, and
Simpson
,
T. W.
,
2003
, “
Multidisciplinary Robust Design Optimization of an Internal Combustion Engine
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
124
130
.
33.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2007
, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
34.
Nguyen
,
T. H.
,
Song
,
J.
, and
Paulino
,
G. H.
,
2009
, “
Single-Loop System Reliability-Based Design Optimization Using Matrix-Based System Reliability Method: Theory and Applications
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011005
.
35.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
36.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R. J.
, and
Gu
,
L.
,
2003
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
272
283
.
You do not currently have access to this content.