In level-set-based topology optimization methods, the spatial gradients of the level set field need to be controlled to avoid excessive flatness or steepness at the structural interfaces. One of the most commonly utilized methods is to generalize the traditional Hamilton−Jacobi equation by adding a diffusion term to control the level set function to remain close to a signed distance function near the structural boundaries. This study proposed a new diffusion term and built it into the Hamilton-Jacobi equation. This diffusion term serves two main purposes: (I) maintaining the level set function close to a signed distance function near the structural boundaries, thus avoiding periodic re-initialization, and (II) making the diffusive rate function to be a bounded function so that a relatively large time-step can be used to speed up the evolution of the level set function. A two-phase optimization algorithm is proposed to ensure the stability of the optimization process. The validity of the proposed method is numerically examined on several benchmark design problems in structural topology optimization.

References

References
1.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
2.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
3.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
3–4
), pp.
250
252
.
4.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1997
,
Evolutionary Structural Optimization
,
Springer
,
Berlin
.
5.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
6.
Deng
,
X.
,
Wang
,
Y.
,
Yan
,
J.
,
Tao
,
L.
, and
Wang
,
S.
,
2016
, “
Topology Optimization of Total Femur Structure: Application of Parameterized Level Set Method Under Geometric Constraints
,”
ASME J. Mech. Des.
,
138
(
1
), p. 011402.
7.
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2011
, “
A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031011
.
8.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Qi
,
H. J.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des.
,
137
(
11
), p. 111402.
9.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.
10.
Wu
,
J.
,
Luo
,
Z.
,
Li
,
H.
, and
Zhang
,
N.
,
2017
, “
Level-Set Topology Optimization for Mechanical Metamaterials Under Hybrid Uncertainties
,”
Comput. Methods Appl. Mech. Eng.
,
319
(1), pp.
414
441
.
11.
Ghasemi
,
H.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2017
, “
A Level-Set Based Iga Formulation for Topology Optimization of Flexoelectric Materials
,”
Comput. Methods Appl. Mech. Eng.
,
313
, pp.
239
258
.
12.
Lawry
,
M.
, and
Maute
,
K.
,
2018
, “
Level Set Shape and Topology Optimization of Finite Strain Bilateral Contact Problems
,”
Int. J. Numer. Methods Eng.
,
113
(8), pp. 1340–1369.
13.
Wang
,
Y.
,
Luo
,
Z.
,
Zhang
,
N.
, and
Qin
,
Q.
,
2016
, “
Topological Shape Optimization of Multifunctional Tissue Engineering Scaffolds With Level Set Method
,”
Struct. Multidiscip. Optim.
,
54
(2), pp. 333–347.
14.
Behrou
,
R.
,
Lawry
,
M.
, and
Maute
,
K.
,
2017
, “
Level Set Topology Optimization of Structural Problems With Interface Cohesion
,”
Int. J. Numer. Methods Eng.
,
112
(
8
), pp. 990–1016.
15.
Zhu
,
B.
,
Zhang
,
X.
,
Wang
,
N.
, and
Fatikow
,
S.
,
2016
, “
Optimize Heat Conduction Problem Using Level Set Method With a Weighting Based Velocity Constructing Scheme
,”
Int. J. Heat Mass Transfer
,
99
, pp.
441
451
.
16.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
A Velocity Predictor–Corrector Scheme in Level Set-Based Topology Optimization to Improve Computational Efficiency
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091001
.
17.
Jiang
,
L.
, and
Chen
,
S.
,
2017
, “
Parametric Structural Shape & Topology Optimization With a Variational Distance-Regularized Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
321
, pp.
316
336
.
18.
Hartmann
,
D.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2010
, “
The Constrained Reinitialization Equation for Level Set Methods
,”
J. Comput. Phys.
,
229
(
5
), pp.
1514
1535
.
19.
Yamasaki
,
S.
,
Nishiwaki
,
S.
,
Yamada
,
T.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2010
, “
A Structural Optimization Method Based on the Level Set Method Using a New Geometry-Based Re-Initialization Scheme
,”
Int. J. Numer. Methods Eng.
,
83
(
12
), pp.
1580
1624
.
20.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
12
), pp.
2060
2090
.
21.
Luo
,
Z.
,
Wang
,
M. Y.
,
Wang
,
S.
, and
Wei, P.
,
2008
, “
A Level Set-Based Parameterization Method for Structural Shape and Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
76
(
1
), pp.
1
26
.
22.
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
78
(
4
), pp.
379
402
.
23.
Luo
,
Z.
,
Tong
,
L.
,
Wang
,
M. Y.
, and
Wang
,
S.
,
2007
, “
Shape and Topology Optimization of Compliant Mechanisms Using a Parameterization Level Set Method
,”
J. Comput. Phys.
,
227
(
1
), pp.
680
705
.
24.
Guo
,
X.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically: A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
25.
Zhang
,
W.
,
Zhou
,
J.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Structural Complexity Control in Topology Optimization Via Moving Morphable Component (Mmc) Approach
,”
Struct. Multidiscip. Optim.
,
56
(3), pp. 535–552.
26.
Guo
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
27.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.
28.
Li
,
C.
,
Xu
,
C.
,
Gui
,
C.
, and
Fox
,
M. D.
,
2010
, “
Distance Regularized Level Set Evolution and Its Application to Image Segmentation
,”
IEEE Trans. Image Process.
,
19
(
12
), pp.
3243
3254
.
29.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2015
, “
Structural Topology and Shape Optimization Using a Level Set Method With Distance-Suppression Scheme
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1214
1239
.
30.
Wang
,
M.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
31.
Zhou
,
M.
, and
Wang
,
M. Y.
,
2012
, “
A Semi-Lagrangian Level Set Method for Structural Optimization
,”
Struct. Multidiscip. Optim.
,
46
(
4
), pp.
487
501
.
32.
Allaire
,
G.
,
Gournay
,
F. D.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2005
, “
Structural Optimization Using Topological and Shape Sensitivity Via a Level Set Method
,”
Control Cybern.
,
34
(
1
), pp.
59
80
.https://eudml.org/doc/209353
33.
Zhu
,
B.
, and
Zhang
,
X.
,
2012
, “
A New Level Set Method for Topology Optimization of Distributed Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
91
(
8
), pp.
843
871
.
34.
Gilboa
,
G.
,
Sochen
,
N.
, and
Zeevi
,
Y. Y.
,
2002
, “
Forward-and-Backward Diffusion Processes for Adaptive Image Enhancement and Denoising
,”
IEEE Trans. Image Process.
,
11
(
7
), pp.
689
703
.
35.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Version, and Material Science
,
Cambridge University Press
, Cambridge, UK.
36.
Kim
,
N. H.
, and
Chang
,
Y.
,
2005
, “
Eulerian Shape Design Sensitivity Analysis and Optimization With a Fixed Grid
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
30–33
), pp.
3291
3314
.
You do not currently have access to this content.