Linkage mechanisms are typically designed to generate a specific functional relationship or path. Because the uncertain dimensions and joint clearances severely affect the output motion accuracy, designers urgently need a reliability-based design approach with high confidence and efficiency. However, the traditional kinematic reliability synthesis, which focuses on several discrete time points, cannot satisfy the accuracy requirement over a continuous time interval. Accordingly, to ensure high accuracy over a time period, this study presents a reliability synthesis approach that considers the time-dependency effect of motion error. The exact statistical characteristics of clearances and dimensions may be unavailable because of the limited sample information in practical engineering. Thus, by qualifying the uncertainties as unknown but bounded variables, the time-dependent reliability index is assessed based on a combination of the nonprobabilistic interval process and first-passage theories. Two engineering examples are presented to demonstrate the validity and applicability of the developed methodology.

References

References
1.
Hayati
,
S.
, and
Mirmirani
,
M.
,
1985
, “
Improving the Absolute Positioning Accuracy of Robot Manipulators
,”
J. Rob. Syst.
,
2
(
4
), pp.
397
413
.
2.
Russell
,
K.
, and
Sodhi
,
R. S.
,
2001
, “
Kinematic Synthesis of Adjustable RRSS Mechanisms for Multi-Phase Motion Generation
,”
Mech. Mach. Theory
,
36
(
8
), pp.
939
952
.
3.
Norton
,
R. L.
, and
Mccarthy
,
J. M.
,
2003
, “
Design of Machinery
,”
ASME J. Mech. Des.
,
125
(
3
), p.
650
.
4.
Gogate
,
G. R.
, and
Matekar
,
S. B.
,
2012
, “
Optimum Synthesis of Motion Generating Four-Bar Mechanisms Using Alternate Error Functions
,”
Mech. Mach. Theory
,
54
, pp.
41
61
.
5.
Matekar
,
S. B.
, and
Gogate
,
G. R.
,
2012
, “
Optimum Synthesis of Path Generating Four-Bar Mechanisms Using Differential Evolution and a Modified Error Function
,”
Mech. Mach. Theory
,
52
, pp.
158
179
.
6.
Lin
,
W. Y.
,
2012
, “
Optimum Path Synthesis of a Four-Link Mechanism With Rolling Contacts
,”
Proc. Inst. Mech. Eng. Part C
,
226
(
2
), pp.
544
551
.
7.
Wu
,
W.
, and
Rao
,
S. S.
,
2004
, “
Interval Approach for the Modeling of Tolerances and Clearances in Mechanism Analysis
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
581
592
.
8.
Mallik
,
A. K.
, and
Dhande
,
S. G.
,
1987
, “
Analysis and Synthesis of Mechanical Error in Path-Generating Linkages Using a Stochastic Approach
,”
Mech. Mach. Theory
,
22
(
2
), pp.
115
123
.
9.
Rao
,
S. S.
, and
Bhatti
,
P. K.
,
2001
, “
Probabilistic Approach to Manipulator Kinematics and Dynamics
,”
Reliab. Eng. Syst. Saf.
,
72
(
1
), pp.
47
58
.
10.
Dhande
,
S. G.
, and
Chakraborty
,
J.
,
1978
, “
Mechanical Error Analysis of Spatial Linkages
,”
ASME J. Mech. Des.
,
100
(
4
), pp.
732
738
.
11.
Mallik
,
A. K.
,
Ghosh
,
A.
, and
Dittrich
,
G.
,
1994
,
Kinematic Analysis and Synthesis of Mechanisms
,
CRC Press
, Boca Raton, FL.
12.
Liu
,
T. S.
, and
Wang
,
J. D.
,
1994
, “
A Reliability Approach to Evaluating Robot Accuracy Performance
,”
Mech. Mach. Theory.
,
29
(
1
), pp.
83
94
.
13.
Baumgarten
,
J. R.
, and
Werff
,
K. V. D.
,
1985
, “
A Probabilistic Study Relating to Tolerancing and Path Generation Error
,”
Mech. Mach. Theory
,
20
(
1
), pp.
71
76
.
14.
Bhatti
,
P. K.
,
1989
, “
Probabilistic Modeling and Optimal Design of Robotic Manipulators
,”
Ph.D. thesis
, Purdue University, West Lafayette, IN.
15.
Rhyu
,
J. H.
, and
Kwak
,
B. M.
,
1988
, “
Optimal Stochastic Design of Four-Bar Mechanisms for Tolerance and Clearance
,”
ASME J. Mech. Des.
,
110
(3), pp.
255
262
.
16.
Dhande
,
S. G.
, and
Chakraborty
,
J.
,
1973
, “
Analysis and Synthesis of Mechanical Error in Linkages—A Stochastic Approach
,”
ASME J. Eng. Ind.
,
95
(
3
), pp.
672
676
.
17.
Du
,
X.
,
1996
, “
Motion Reliability Synthesis for Mechanism
,”
Mach. Des.
,
2
(1), pp. 8–10.
18.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-Dependent Reliability Analysis for Function Generation Mechanisms With Random Joint Clearances
,”
Mech. Mach. Theory
,
92
, pp.
184
199
.
19.
Zhang
,
J.
,
Wang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Probabilistic Synthesis for Function Generator Mechanisms
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1236
1250
.
20.
Erkaya
,
S.
, and
Uzmay
,
İ.
,
2009
, “
Determining Link Parameters Using Genetic Algorithm in Mechanisms With Joint Clearance
,”
Mech. Mach. Theory
,
44
(
1
), pp.
222
234
.
21.
Meng
,
J.
,
Zhang
,
D.
, and
Li
,
Z.
,
2009
, “
Accuracy Analysis of Parallel Manipulators With Joint Clearance
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011013
.
22.
Huang
,
X.
, and
Zhang
,
Y.
,
2010
, “
Robust Tolerance Design for Function Generation Mechanisms With Joint Clearances
,”
Mech. Mach. Theory
,
45
(
9
), pp.
1286
1297
.
23.
Erkaya
,
S.
, and
Uzmay
,
İ.
,
2009
, “
Optimization of Transmission Angle for Slider-Crank Mechanism With Joint Clearances
,”
Struct. Multidiscip. Optim.
,
37
(
5
), pp.
493
508
.
24.
Erkaya
,
S.
, and
Uzmay
,
İ.
,
2008
, “
A Neural–Genetic (NN–GA) Approach for Optimising Mechanisms Having Joints With Clearance
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
69
83
.
25.
Wang
,
L.
,
Wang
,
X.
,
Li
,
Y.
,
Lin
,
G.
, and
Qiu
,
Z.
,
2016
, “
Structural Time‐Dependent Reliability Assessment of the Vibration Active Control System With Unknown‐but‐Bounded Uncertainties
,”
Struct. Control Health Monit.
,
24
(
10
), p.
e1965
.
26.
Qiu
,
Z.
,
2005
, “
Convex Models and Interval Analysis Method to Predict the Effect of Uncertain-but-Bounded Parameters on the Buckling of Composite Structures
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
18–20
), pp.
2175
2189
.
27.
Wang
,
L.
,
Wang
,
X.
,
Wang
,
R.
, and
Chen
,
X.
,
2015
, “
Time-Dependent Reliability Modeling and Analysis Method for Mechanics Based on Convex Process
,”
Math. Probl. Eng.
,
2015
p.
914893
.
28.
Jiang
,
C.
,
Huang
,
X. P.
,
Wei
,
X. P.
, and
Liu
,
N. Y.
,
2017
, “
A Time-Variant Reliability Analysis Method for Structural Systems Based on Stochastic Process Discretization
,”
Int. J. Mech. Mater. Des.
,
13
(
2
), pp.
173
193
.
29.
Wang
,
L.
,
Wang
,
X.
,
Chen
,
X.
, and
Wang
,
R.
,
2015
, “
Time-Variant Reliability Model and Its Measure Index of Structures Based on a Non-Probabilistic Interval Process
,”
Acta Mech.
,
226
(
10
), pp.
1
21
.
30.
Wang
,
L.
,
Wang
,
X.
,
Su
,
H.
, and
Lin
,
G.
,
2017
, “
Reliability Estimation of Fatigue Crack Growth Prediction Via Limited Measured Data
,”
Int. J. Mech. Sci.
,
121
, pp. 44–57.
31.
Hu
,
J.
, and
Qiu
,
Z.
,
2010
, “
Non-Probabilistic Convex Models and Interval Analysis Method for Dynamic Response of a Beam With Bounded Uncertainty
,”
Appl. Math. Modell.
,
34
(
3
), pp.
725
734
.
32.
Wang
,
X.
,
Qiu
,
Z.
, and
Elishakoff
,
I.
,
2008
, “
Non-Probabilistic Set-Theoretic Model for Structural Safety Measure
,”
Acta Mech.
,
198
(
1–2
), pp.
51
64
.
33.
Qiu
,
Z. P.
, and
Wang
,
L.
,
2016
, “
The Need for Introduction of Non-Probabilistic Interval Conceptions Into Structural Analysis and Design
,”
Sci. China Phys. Mech. Astron.
,
59
(
11
), p.
114632
.
34.
Wang
,
X.
,
Wang
,
L.
,
Elishakoff
,
I.
, and
Qiu
,
Z.
,
2011
, “
Probability and Convexity Concepts Are Not Antagonistic
,”
Acta Mech.
,
219
(
1–2
), pp.
45
64
.
You do not currently have access to this content.