We present an effective optimization strategy that is capable of discovering high-quality cost-optimal solution for two-dimensional (2D) path network layouts (i.e., groups of obstacle-avoiding Euclidean Steiner trees) that, among other applications, can serve as templates for complete ascent assembly structures (CAA-structures). The main innovative aspect of our approach is that our aim is not restricted to simply synthesizing optimal assembly designs with regard to a given goal, but we also strive to discover the best tradeoffs between geometric and domain-dependent optimal designs. As such, the proposed approach is centered on a variably constrained multi-objective formulation of the optimal design task and on an efficient coevolutionary solver. The results we obtained on both artificial problems and realistic design scenarios based on an industrial test case empirically support the value of our contribution to the fields of optimal obstacle-avoiding path generation in particular and design automation in general.

References

References
1.
Frank
,
G.
,
Entner
,
D.
,
Prante
,
T.
,
Khachatouri
,
V.
, and
Schwarz
,
M.
,
2014
, “
Towards a Generic Framework of Engineering Design Automation for Creating Complex CAD Models
,”
Int. J. Adv. Syst. Meas.
,
7
(
1–2
), pp.
179
192
.
2.
Antonsson
,
E. K.
, and
Cagan
,
J.
,
2005
,
Formal Engineering Design Synthesis
,
Cambridge University Press
,
Cambridge, UK
.
3.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
4.
Stöckli
,
F.
, and
Shea
,
K.
,
2017
, “
Automated Synthesis of Passive Dynamic Brachiating Robots Using a Simulation-Driven Graph Grammar Method
,”
ASME J. Mech. Des.
,
139
(
9
), p.
092301
.
5.
Zăvoianu
,
A.-C.
,
Saminger-Platz
,
S.
,
Entner
,
D.
,
Prante
,
T.
,
Hellwig
,
M.
,
Schwarz
,
M.
, and
Fink
,
K.
,
2017
, “
On the Optimization of 2D Path Network Layouts in Engineering Designs Via Evolutionary Computation Techniques
,”
EUROGEN 2017—Book of Extended Abstracts
,
E.
Andrés
,
L.
González
,
J.
Periaux
,
N.
Gauger
,
K.
Giannakoglou
, and
D.
Quagliarella
, eds.,
Technical University of Madrid
, Madrid, Spain.
6.
Kageura
,
M.
, and
Shimada
,
K.
,
2004
, “
Finding the Shortest Path on a Polyhedral Surface and Its Application to Quality Assurance of Electric Components
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1017
1026
.
7.
Long
,
J.
,
Zhou
,
H.
, and
Memik
,
S. O.
,
2008
, “
EBOARST: An Efficient Edge-Based Obstacle-Avoiding Rectilinear Steiner Tree Construction Algorithm
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
27
(
12
), pp.
2169
2182
.
8.
Verhagen
,
P.
,
Polla
,
S.
, and
Frommer
,
I.
,
2011
, “
Finding Byzantine Junctions With Steiner Trees
,”
Computational Approaches to Movement in Archaeology
, S. Polla and P. Verhagen, eds., De Gruyter, Berlin, pp.
73
97
.
9.
Klincewicz
,
J. G.
,
1998
, “
Hub Location in Backbone/Tributary Network Design: A Review
,”
Location Sci.
,
6
(
1
), pp.
307
335
.
10.
Smith
,
J. M.
, and
Gross
,
M.
,
1982
, “
Steiner Minimal Trees and Urban Service Networks
,”
Socio-Econ. Plann. Sci.
,
16
(
1
), pp.
21
38
.
11.
Burdakov
,
O.
,
Doherty
,
P.
, and
Kvarnström
,
J.
,
2014
, “
Local Search for Hop-Constrained Directed Steiner Tree Problem With Application to UAV-Based Multi-Target Surveillance
,”
Examining Robustness and Vulnerability of Networked Systems
, S. Butenko, E. L. Pasiliao, and V. Shylo, eds.,
IOS Press
, Amsterdam, The Netherlands, pp.
26
50
.
12.
Lin
,
C.-W.
,
Chen
,
S.-Y.
,
Li
,
C.-F.
,
Chang
,
Y.-W.
, and
Yang
,
C.-L.
,
2008
, “
Obstacle-Avoiding Rectilinear Steiner Tree Construction Based on Spanning Graphs
,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
,
27
(
4
), pp.
643
653
.
13.
Hu
,
Y.
,
Feng
,
Z.
,
Jing
,
T.
,
Hong
,
X.
,
Yang
,
Y.
,
Yu
,
G.
,
Hu
,
X.
, and
Yan
,
G.
,
2004
, “
FORst: A 3-Step Heuristic for Obstacle-Avoiding Rectilinear Steiner Minimal Tree Construction
,”
J. Inf. Comput. Sci.
,
1
(
3
), pp.
107
116
.
14.
Zachariasen
,
M.
, and
Winter
,
P.
,
1999
,
Obstacle-Avoiding Euclidean Steiner Trees in the Plane: An Exact Algorithm
(Lecture Notes Computer Science, Vol.
1619)
, Springer, Berlin, pp.
282
295
.
15.
Warme
,
D. M.
,
Winter
,
P.
, and
Zachariasen
,
M.
,
2000
, “
Exact Algorithms for Plane Steiner Tree Problems: A Computational Study
,”
Advances in Steiner Trees
,
Springer
, New York, pp.
81
116
.
16.
Gilbert
,
E.
, and
Pollak
,
H.
,
1968
, “
Steiner Minimal Trees
,”
SIAM J. Appl. Math.
,
16
(
1
), pp.
1
29
.
17.
Garey
,
M. R.
,
Graham
,
R. L.
, and
Johnson
,
D. S.
,
1977
, “
The Complexity of Computing Steiner Minimal Trees
,”
SIAM J. Appl. Math.
,
32
(
4
), pp.
835
859
.
18.
Miettinen
,
K.
,
1999
,
Nonlinear Multiobjective Optimization
,
Kluwer Academic Publishers
, Boston, MA.
19.
Coello Coello
,
C.
,
Lamont
,
G.
, and
Van Veldhuisen
,
D.
,
2007
,
Evolutionary Algorithms for Solving Multi-Objective Problems
(Genetic and Evolutionary Computation Series),
Springer
, New York.
20.
Deb
,
K.
, and
Jain
,
S.
,
2003
, “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
609
619
.
21.
Coelho
,
R. F.
,
2013
, “
Co-Evolutionary Optimization for Multi-Objective Design Under Uncertainty
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021006
.
22.
Zăvoianu
,
A.-C.
,
Bramerdorfer
,
G.
,
Lughofer
,
E.
,
Silber
,
S.
,
Amrhein
,
W.
, and
Klement
,
E. P.
,
2013
, “
A Hybrid Soft Computing Approach for Optimizing Design Parameters of Electrical Drives
,”
Advances in Intelligent Systems and Computing
, Vol. 188,
V.
Snásel
,
A.
Abraham
, and
E. S.
Corchado
, eds., Springer, Berlin, pp.
347
358
.
23.
Kwong
,
W. Y.
,
Zhang
,
P. Y.
,
Romero
,
D.
,
Moran
,
J.
,
Morgenroth
,
M.
, and
Amon
,
C.
,
2014
, “
Multi-Objective Wind Farm Layout Optimization Considering Energy Generation and Noise Propagation With NSGA-II
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091010
.
24.
Langdon
,
W. B.
, and
Poli
,
R.
,
1998
, “
Fitness Causes Bloat
,”
Soft Computing in Engineering Design and Manufacturing
,
P.
Chawdhry
,
R.
Roy
, and
R. K.
Pant
, eds.,
Springer
,
London
, pp.
13
22
.
25.
Prim
,
R. C.
,
1957
, “
Shortest Connection Networks and Some Generalizations
,”
Bell Labs Tech. J.
,
36
(
6
), pp.
1389
1401
.
26.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
27.
Zăvoianu
,
A.-C.
,
Lughofer
,
E.
,
Bramerdorfer
,
G.
,
Amrhein
,
W.
, and
Klement
,
E. P.
,
2014
, “
DECMO2: A Robust Hybrid and Adaptive Multi-Objective Evolutionary Algorithm
,”
Soft Comput.
,
19
(
12
), pp.
3551
3569
.
28.
Zăvoianu
,
A.-C.
,
Lughofer
,
E.
,
Amrhein
,
W.
, and
Klement
,
E. P.
,
2013
, “
Efficient Multi-Objective Optimization Using 2-Population Cooperative Coevolution
,”
Computer Aided Systems Theory—EUROCAST 2013
(Lecture Notes in Computer Science),
Springer
,
Berlin
, pp.
251
258
.
29.
Zitzler
,
E.
,
Laumanns
,
M.
, and
Thiele
,
L.
,
2002
, “
SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization
,”
Evolutionary Methods for Design, Optimisation and Control With Application to Industrial Problems
(
EUROGEN
2001), Athens, Greece, Sept. 19–21, pp.
95
100
.
30.
Deb
,
K.
, and
Agrawal
,
R. B.
,
1995
, “
Simulated Binary Crossover for Continuous Search Space
,”
Complex Syst.
,
9
, pp.
115
148
.
31.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
, New York.
32.
Kukkonen
,
S.
, and
Lampinen
,
J.
,
2005
, “
GDE3: The Third Evolution Step of Generalized Differential Evolution
,”
IEEE Congress on Evolutionary Computation
(
CEC
2005), Edinburgh, Scotland, Sept. 2–5, pp.
443
450
.
33.
Robič
,
T.
, and
Filipič
,
B.
,
2005
, “
DEMO: Differential Evolution for Multiobjective Optimization
,”
International Conference on Evolutionary Multi-Criterion Optimization
(
EMO
2005), Guanajuato, Mexico, Mar. 9–11, pp.
520
533
.
34.
Storn
,
R.
, and
Price
,
K. V.
,
1997
, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
(
4
), pp.
341
359
.
35.
Jaszkiewicz
,
A.
,
2002
, “
On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem—A Comparative Experiment
,”
IEEE Trans. Evol. Comput.
,
6
(
4
), pp.
402
412
.
36.
Zhang
,
Q.
,
Liu
,
W.
, and
Li
,
H.
,
2009
, “The Performance of a New Version of MOEA/D on CEC09 Unconstrained MOP Test Instances,” IEEE Congress on Evolutionary Computation (
CEC
), Trondheim, Norway, May 18–21, pp. 203–208.
37.
Soukup
,
J.
, and
Chow
,
W.
,
1973
, “
Set of Test Problems for the Minimum Length Connection Networks
,”
ACM SIGMAP Bull.
,
15
, pp.
48
51
.
38.
Beasley
,
J. E.
,
1992
, “
A Heuristic for Euclidean and Rectilinear Steiner Problems
,”
Eur. J. Oper. Res.
,
58
(
2
), pp.
284
292
.
39.
Bhaumik
,
B.
,
1994
, “
A Neural Network for the Steiner Minimal Tree Problem
,”
Biol. Cybern.
,
70
(
5
), pp.
485
494
.
40.
Liebherr-Werk Nenzing GmbH
,
2017
, “Technological Forefront: Piling and Drilling Rigs as Well as Crawler Cranes are Manufactured in Nenzing,” Liebherr, Bulle, Switzerland, accessed Jan. 29, 2018, https://www.liebherr.com/en/ind/about-liebherr/liebherr-worldwide/austria/nenzing/nenzing-gmbh.html
41.
Hellwig
,
M.
,
Entner
,
D.
,
Prante
,
T.
,
Zăvoianu
,
A.-C.
,
Schwarz
,
M.
, and
Fink
,
K.
,
2017
, “
Optimization of Ascent Assembly Design Based on a Combinatorial Problem Representation
,”
EUROGEN 2017—Book of Extended Abstracts
, E. Andrés, L. González, J. Periaux, N. Gauger, K. Giannakoglou, and D. Quagliarella, eds.,
Technical University of Madrid
, Madrid, Spain.
42.
Zăvoianu
,
A.-C.
,
Lughofer
,
E.
,
Koppelstätter
,
W.
,
Weidenholzer
,
G.
,
Amrhein
,
W.
, and
Klement
,
E. P.
,
2015
, “
Performance Comparison of Generational and Steady-State Asynchronous Multi-Objective Evolutionary Algorithms for Computationally-Intensive Problems
,”
Knowl.-Based Syst.
,
87
, pp.
47
60
.
43.
Harada
,
T.
, and
Takadama
,
K.
,
2017
, “
Performance Comparison of Parallel Asynchronous Multi-Objective Evolutionary Algorithm With Different Asynchrony
,”
IEEE Congress on Evolutionary Computation
(
CEC
), San Sebastian, Spain, June 5–8, pp.
1215
1222
.
You do not currently have access to this content.