In this paper, a powered ankle-foot prosthesis with nonlinear parallel spring mechanism is developed. The parallel spring mechanism is used for reducing the energy consumption and power requirement of the motor, at the same time simplifying control of the prosthesis. To achieve that goal, the parallel spring mechanism is implemented as a compact cam-spring mechanism that is designed to imitate human ankle dorsiflexion stiffness. The parallel spring mechanism can store the negative mechanical energy in controlled dorsiflexion (CD) phase and release it to assist the motor in propelling a human body forward in a push-off phase (PP). Consequently, the energy consumption and power requirements of the motor are both decreased. To obtain this desired behavior, a new design method is proposed for generating the cam profile. Unlike the existing design methods, the friction force is considered here. The cam profile is decomposed into several segments, and each segment is fitted by a quadratic Bezier curve. Experimental results show that the cam-spring mechanism can mimic the desired torque characteristics in the CD phase (a loading process) more precisely. Finally, the developed prosthesis is tested on a unilateral below-knee amputee. Results indicate that, with the assistance of the parallel spring mechanism, the motor is powered off and control is not needed in the CD phase. In addition, the peak power and energy consumption of the motor are decreased by approximately 37.5% and 34.6%, respectively.

References

References
1.
Schimmels
,
M. J.
, and
Huang
,
S. G.
,
2014
, “Passive Ankle Prosthesis With Energy Return Simulating That of a Natural Ankle,” U.S. Patent No.
8,721,737
.https://patents.google.com/patent/US8721737
2.
Hafner
,
J. B.
,
Sanders
,
E. J.
,
Czerniecki
,
M. J.
, and
John
,
F.
,
2002
, “
Transtibial Energy-Storage-and-Return Prosthetic Devices: A Review of Energy Concepts and a Proposed Nomenclature
,”
J. Rehabil. Res. Dev.
,
39
(
1
), pp.
1
11
.https://www.rehab.research.va.gov/jour/02/39/1/pdf/Hafner.pdf
3.
Copilusi
,
C.
,
Dumitru
,
N.
,
Rusu
,
L.
, and
Marin
,
M.
,
2010
, “Cam Mechanism Kinematic Analysis Used in a Human Ankle Prosthesis Structure,” World Congress on Engineering (
WCE
), London, June 30–July 2, pp. 1316–1320.https://pdfs.semanticscholar.org/95ee/f5a8a03dc1a431641eb9276dab7918cfbc68.pdf
4.
Koniuk
,
W.
,
2002
, “Self-Adjusting Prosthetic Ankle Apparatus,” U.S. Patent No.
6,443,993
.https://patents.google.com/patent/US6443993
5.
Li
,
C.
,
Tokuda
,
M.
,
Furusho
,
J.
,
Koyanagi
,
K. I.
,
Morimoto
,
S.
,
Hashimoto
,
Y.
,
Nakagawa
,
A.
, and
Akazawa
,
Y.
,
2006
, “
Research and Development of the Intelligently-Controlled Prosthetic Ankle Joint
,”
IEEE
International Conference on Mechatronics and Automation,
Luoyang, China, June 25–28, pp. 1114–1119.
6.
Martin
,
J. J.
,
2006
, “Electronically Controlled Prosthetic System,” U.S. Patent No.
7,029,500
.https://patents.google.com/patent/US7029500
7.
Zhu
,
J.
,
Wang
,
Q.
, and
Wang
,
L.
,
2014
, “
On the Design of a Powered Transtibial Prosthesis With Stiffness Adaptable Ankle and Toe Joints
,”
IEEE Trans. Ind. Electron.
,
61
(
9
), pp.
4797
4807
.
8.
Martin
,
G.
,
2015
, “Powered Lower Limb Prostheses,”
Ph.D. dissertation
, Darmstadt University of Technology, Darmstadt, Germany.https://www.researchgate.net/publication/272484378_Powered_Lower_Limb_Prostheses
9.
Au
,
S. K.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis
,”
Rob. Autom. Mag.
, (
3
), pp.
52
59
.
10.
Pierre
,
C.
,
Victor
,
G.
,
Arnout
,
M.
,
Bram
,
V.
, and
Dirk
,
L.
,
2014
, “
Design and Validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
1
), pp.
138
148
.
11.
Hitt
,
J.
,
Merlo
,
J.
,
Johnston
,
J.
,
Holgate
,
M.
,
Boehler
,
A.
,
Hollander
,
K.
, and
Sugar
,
T.
,
2010
, “Bionic Running for Unilateral Transtibial Military Amputees,” Defense Technical Information Center, Fort Belvoir, VA, Technical Report No.
0704-0188
.http://www.dtic.mil/docs/citations/ADA532485
12.
Bergelin
,
B. J.
, and
Voglewede
,
P. A.
,
2012
, “
Design of an Active Ankle-Foot Prosthesis Utilizing a Four-Bar Mechanism
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061004
.
13.
Gao
,
F.
,
Liao
,
W. H.
,
Chen
,
B.
,
Ma
,
H.
, and
Qin
,
L. Y.
,
2015
, “
Design of Powered Ankle-Foot Prosthesis Driven by Parallel Elastic Actuator
,”
IEEE 14th International Conference Rehabilitation Robotics
(
ICORR
), Singapore, Aug. 11–14, pp.
374
379
.
14.
Gao
,
F.
,
Liu
,
Y. N.
, and
Liao
,
W. H.
,
2016
, “
A New Powered Ankle-Foot Prosthesis With Compact Parallel Spring Mechanism
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Qingdao, China, Dec. 3–7, pp.
473
478
.
15.
Dong
,
D.
,
Ge
,
W.
,
Liu
,
S.
,
Xia
,
F.
, and
Sun
,
Y.
,
2017
, “
Design and Optimization of a Powered Ankle-Foot Prosthesis Using a Geared Five-Bar Spring Mechanism
,”
Int. J. Adv. Rob. Syst.
,
14
(
3
), pp. 1–12.
16.
Realmuto
,
J.
,
Glenn
,
K.
, and
Santosh
,
D.
,
2015
, “
Nonlinear Passive Cam-Based Springs for Powered Ankle Prostheses
,”
ASME J. Med. Devices
,
9
(
1
), p.
011007
.
17.
Rene
,
J. F.
,
Joost
,
G.
,
Louis
,
F.
,
Bram
,
V.
, and
Dirk
,
L.
,
2017
, “
Reduction of the Torque Requirements of an Active Ankle Prosthesis Using a Parallel Spring
,”
Rob. Auton. Syst.
,
92
, pp.
187
196
.
18.
Au
,
S. K.
,
Weber
,
J.
, and
Herr
,
H.
,
2009
, “
Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
51
66
.
19.
Herr
,
H. M.
, and
Grabowski
,
A. M.
,
2012
, “
Bionic Ankle–Foot Prosthesis Normalizes Walking Gait for Persons With Leg Amputation
,”
Proc. R. Soc. B.
,
279
(
1728
), pp.
457
464
.
20.
Koganezawa
,
K.
, and
Kato
,
I.
,
1987
,
Control Aspects of Artificial Leg
,
IFAC Control Aspects of Biomedical Engineering
, Oxford, UK, pp.
71
85
.
21.
Pratt
,
G. A.
, and
Matthew
,
M. W.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots,
Pittsburgh, PA, Aug. 5–9, pp. 399–406.
22.
Grimmer
,
M.
,
Eslamy
,
M.
,
Gliech
,
S.
, and
Seyfarth
,
A.
,
2012
, “
A Comparison of Parallel- and Series Elastic Elements in an Actuator for Mimicking Human Ankle Joint in Walking and Running
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp. 2463–2470.
23.
Eslamy
,
M.
,
Grimmer
,
M.
, and
Seyfarth
,
A.
,
2012
, “
Effects of Unidirectional Parallel Springs on Required Peak Power and Energy in Powered Prosthetic Ankles: Comparison Between Different Active Actuation Concepts
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Guangzhou, China, Dec. 11–14, pp. 2406–2412.
24.
Eiberger
,
O.
,
Haddadin
,
S.
,
Weis
,
M.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2010
, “
On Joint Design With Intrinsic Variable Compliance: Derivation of the DLR QA-Joint
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Anchorage, AK, May 3–7, pp. 1687–1694.
25.
Wolf
,
S.
,
Oliver
,
E.
, and
Gerd
,
H.
,
2011
, “
The DLR FSJ: Energy Based Design of a Variable Stiffness Joint
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
5982
5089
.
26.
Petit
,
F.
,
Friedl
,
W.
,
Höppner
,
H.
, and
Grebenstein
,
M.
,
2015
, “
Analysis and Synthesis of the Bidirectional Antagonistic Variable Stiffness Mechanism
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
684
695
.
27.
Nam
,
K. H.
,
Kim
,
B. S.
, and
Song
,
J. B.
,
2010
, “
Compliant Actuation of Parallel-Type Variable Stiffness Actuator Based on Antagonistic Actuation
,”
J. Mech. Sci. Technol.
,
24
(
11
), pp.
2315
2321
.
28.
Hyun
,
D.
,
Yang
,
H. S.
,
Park
,
J.
, and
Shim
,
Y.
,
2010
, “
Variable Stiffness Mechanism for Human-Friendly Robots
,”
Mech. Mach. Theory
,
45
(
6
), pp.
880
897
.
29.
Gates
,
D. H.
,
2004
, “Characterizing Ankle Function During Stair Ascent, Descent, and Level Walking for Ankle Prosthesis and Orthosis Design,” Master thesis, University of Virginia, Charlottesville, VA.
30.
Joy
,
K. I.
,
2000
, “
Quadratic Bezier Curves
,”
University of California
,
Davis, CA
.
31.
Sup
,
F.
,
Varol
,
H. A.
,
Mitchell
,
J.
,
Withrow
,
T. J.
, and
Goldfarb
,
M.
,
2009
, “
Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatronics
,
14
(
6
), pp.
667
676
.
32.
Au
,
S.
,
Berniker
,
M.
, and
Herr
,
H.
,
2008
, “
Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits
,”
Neural Networks
,
21
(
4
), pp.
654
666
.
You do not currently have access to this content.