A load distribution model of planetary gear sets presented is capable of simulating planetary gear sets having component- and system-level design variations such as component supporting conditions, different kinds of gear modifications and planetary gear sets with different numbers of equally or unequally spaced planets as well as different gear set kinematic configurations while considering gear mesh phasing. It also accounts for classes of planetary gear set manufacturing and assembly related errors associated with the carrier or gears, i.e., pinhole position errors, run-out errors, and tooth thickness errors. Example analyses are provided to indicate the need for a model of this type when studying load distribution of planetary gear sets due to unique loading of the gear meshes associated with planetary gear sets. Comparisons to measurements existing in the literature are provided.

References

1.
Vijayakar
,
S.
,
1991
, “
A Combined Surface Integral and Finite Element Solution for a Three-Dimensional Contact Problem
,”
Int. J. Num. Method Eng.
,
31
(
3
), pp.
525
545
.
2.
Kahraman
,
A.
, and
Vijayakar
,
S.
,
2001
, “
Effect of Internal Gear Flexibility on the Quasi-Static Behavior of a Planetary Gear Set
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
408
415
.
3.
Bodas
,
A.
, and
Kahraman
,
A.
,
2004
, “
Influence of Carrier and Gear Manufacturing Errors on the Static Load Sharing Behavior of Planetary Gear Sets
,”
JSME Int. J., Ser. C
,
47
(
3
), pp.
908
915
.
4.
Kwon
,
H. S.
,
Kahraman
,
A.
,
Lee
,
H. K.
, and
Suh
,
H. S.
,
2014
, “
An Automated Design Search for Single and Double-Planet Planetary Gear Sets
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061004
.
5.
Colbourne
,
J. R.
,
1981
, “The Design of Undercut Involute Gears,”
ASME
Paper No. 80-C2/DET-67.
6.
Colbourne
,
J. R.
,
1987
, “The Geometric Design of Internal Gear Pairs,”
ASME
Paper No. 87FTM2.
7.
Polder
,
J. W.
,
1984
, “Interference and Other Limiting Conditions of Internal Gears,”
ASME
Paper No. 84-DET-180.
8.
Talbot
,
D.
,
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
Prediction of Mechanical Power Loss of Planet Gear Roller Bearings Under Combined Radial and Moment Loading
,”
ASME J. Mech. Des.
,
135
(
12
), p.
121007
.
9.
Talbot
,
D. C.
,
Kahraman
,
A.
,
Stilwell
,
A. W.
,
Singh
,
A.
, and
Napau
,
I.
,
2015
, “
Power Losses of Full-Complement Needle Bearings of Planetary Gear Sets: Model and Experiments
,”
Proc. Inst. Mech. Eng. Part C
, 230(5), pp. 839–855.
10.
Lim
,
T. C.
, and
Singh
,
R.
,
1990
, “
Vibration Transmission Through Rolling Element Bearings—Part I: Bearing Stiffness Formulation
,”
J. Sound Vib.
,
139
(
2
), pp.
179
199
.
11.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis
, 5th ed., CRC Press,
Boca Raton, FL
.
12.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
,
2008
, “
An Experimental Study of the Influence of Manufacturing Errors on the Planetary Gear Stresses and Planet Load Sharing
,”
ASME J. Mech. Des.
,
130
(
4
), p.
041701
.
13.
Ligata
,
H.
,
Kahraman
,
A.
, and
Singh
,
A.
,
2009
, “
Closed-Form Planet Load Sharing Formulae for Planetary Gear Sets Using Translational Analogy
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021007
.
14.
Singh
,
A.
,
2005
, “
Application of a System Level Model to Study the Planetary Load Sharing Behavior
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
469
476
.
15.
Boguski
,
B.
,
Kahraman
,
A.
, and
Nishino
,
T.
,
2012
, “
A New Method to Measure Planet Load Sharing and Sun Gear Radial Orbits of Planetary Gear Sets
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071002
.
16.
Leque
,
N.
, and
Kahraman
,
A.
,
2017
, “
A Three-Dimensional Load Sharing Model of Planetary Gear Sets Having Manufacturing Errors
,”
ASME J. Mech. Des.
,
139
(
3
), p.
033302
.
17.
Windows-LDP
, 2017, “Windows-LDP, Load Distribution Program,” Gear and Power Transmission Research Laboratory, The Ohio State University, Columbus, OH.
18.
Kahraman
,
A.
,
Ligata
,
H.
,
Kienzle
,
K.
, and
Zini
,
D.
,
2004
, “
A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1071
1081
.
19.
Conry
,
T. F.
, and
Seireg
,
A.
,
1971
, “
A Mathematical Programming Method for Design of Elastic Bodies in Contact
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
387
392
.
20.
Conry
,
T. F.
, and
Seireg
,
A.
,
1973
, “
A Mathematical Programming Technique for the Evaluation of Load Distribution and Optimal Modifications for Gear Systems
,”
ASME J. Eng. Ind.
,
95
(
4
), pp.
1115
1122
.
21.
Singh
,
A.
,
Kahraman
,
A.
, and
Ligata
,
H.
,
2008
, “
Internal Gear Strains and Load Sharing in Planetary Transmissions—Model and Experiments
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072602
.
22.
Talbot
,
D.
,
Kahraman
,
A.
, and
Singh
,
A.
,
2012
, “
An Experimental Investigation of the Efficiency of Planetary Gear Sets
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021003
.
23.
Talbot
,
D.
, and
Kahraman
,
A.
,
2014
, “
A Methodology to Predict Power Losses of Planetary Gear Sets
,”
International Gear Conference
, Lyon-Villeurbanne, France, Aug. 26–28, pp. 625–635.
24.
Kahraman
,
A.
,
1994
, “
Planetary Gear Train Dynamics
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
713
720
.
25.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1994
, “
Planet Mesh Phasing in Epicyclic Gear Sets
,”
International Gearing Conference
, Newcastle, WA, Sept. 7–9, pp.
99
104.
26.
Parker
,
R. G.
, and
Lin
,
J.
,
2004
, “
Mesh Phasing Relationships in Planetary and Epicyclic Gears
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
365
374
.
27.
Yau
,
E.
,
Busby
,
H. R.
, and
Houser
,
D. R.
,
1994
, “
A Rayleigh-Ritz Approach to Modeling Bending and Shear Deflections of Gear Teeth
,”
Comput. Struct.
,
50
(
5
), pp.
705
713
.
28.
Stegemiller
,
M. E.
, and
Houser
,
D. R.
,
1993
, “
A Three-Dimensional Analysis of the Base Flexibility of Gear Teeth
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
186
192
.
29.
Cornell
,
R. W.
,
1981
, “
Compliance and Stress Sensitivity of Spur Gear Teeth
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
447
459
.
You do not currently have access to this content.