Strategies combining active learning Kriging (ALK) model and Monte Carlo simulation (MCS) method can accurately estimate the failure probability of a performance function with a minimal number of training points. That is because training points are close to the limit state surface and the size of approximation region can be minimized. However, the estimation of a rare event with very low failure probability remains an issue, because purely building the ALK model is time-demanding. This paper is intended to address this issue by researching the fusion of ALK model with kernel-density-estimation (KDE)-based importance sampling (IS) method. Two stages are involved in the proposed strategy. First, ALK model built in an approximation region as small as possible is utilized to recognize the most probable failure region(s) (MPFRs) of the performance function. Consequentially, the priori information for IS are obtained with as few training points as possible. In the second stage, the KDE method is utilized to build an instrumental density function for IS and the ALK model is continually updated by treating the important samples as candidate samples. The proposed method is termed as ALK-KDE-IS. The efficiency and accuracy of ALK-KDE-IS are compared with relevant methods by four complicated numerical examples.

References

1.
Pan
,
Q.
, and
Dias
,
D.
,
2017
, “
Sliced Inverse Regression-Based Sparse Polynomial Chaos Expansions for Reliability Analysis in High Dimensions
,”
Reliab. Eng. Syst. Saf.
,
167
, pp.
484
493
.
2.
Kroetz
,
H. M.
,
Tessari
,
R. K.
, and
Beck
,
A. T.
,
2017
, “
Performance of Global Metamodeling Techniques in Solution of Structural Reliability Problems
,”
Adv. Eng. Software
,
114
, pp.
394
404
.
3.
Bourinet
,
J.-M.
,
Deheeger
,
F.
, and
Lemaire
,
M.
,
2011
, “
Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines
,”
Struct. Saf.
,
33
(
6
), pp.
343
353
.
4.
Kim
,
S.-H.
, and
Na
,
S.-W.
,
1997
, “
Response Surface Method Using Vector Projected Sampling Points
,”
Struct. Saf.
,
19
(
1
), pp.
3
19
.
5.
Papadopoulos
,
V.
,
Giovanis
,
D. G.
,
Lagaros
,
N. D.
, and
Papadrakakis
,
M.
,
2012
, “
Accelerated Subset Simulation With Neural Networks for Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
223–224
, pp.
70
80
.
6.
Yang
,
X.
,
Liu
,
Y.
, and
Gao
,
Y.
,
2016
, “
Unified Reliability Analysis by Active Learning Kriging Model Combining With Random‐Set Based Monte Carlo Simulation Method
,”
Int. J. Numer. Methods Eng.
,
108
(11), pp. 1343–1361.
7.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
8.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
9.
Sun
,
Z.
,
Wang
,
J.
,
Li
,
R.
, and
Tong
,
C.
,
2017
, “
LIF: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
157
, pp.
152
165
.
10.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J.-M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
673
690
.
11.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Global Sensitivity Analysis-Enhanced Surrogate (GSAS) Modeling for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
501
521
.
12.
Echard
,
B.
,
Gayton
,
N.
,
Lemaire
,
M.
, and
Relun
,
N.
,
2013
, “
A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities With Time-Demanding Numerical Models
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
232
240
.
13.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
49
(
3
), pp.
401
416
.
14.
Wen
,
Z.
,
Pei
,
H.
,
Liu
,
H.
, and
Yue
,
Z.
,
2016
, “
A Sequential Kriging Reliability Analysis Method With Characteristics of Adaptive Sampling Regions and Parallelizability
,”
Reliab. Eng. Syst. Saf.
,
153
, pp.
170
179
.
15.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
.
16.
Wang
,
Z.
, and
Wang
,
P.
,
2015
, “
An Integrated Performance Measure Approach for System Reliability Analysis
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021406
.
17.
Wang
,
Z.
, and
Wang
,
P.
,
2016
, “
Accelerated Failure Identification Sampling for Probability Analysis of Rare Events
,”
Struct. Multidiscip. Optim.
,
54
(
1
), pp.
137
149
.
18.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061406
.
19.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Adaptive Surrogate Modeling for Time-Dependent Multidisciplinary Reliability Analysis
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021401
.
20.
Au
,
S.
, and
Beck
,
J. L.
,
1999
, “
A New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Safety
,
21
(
2
), pp.
135
158
.
21.
Au
,
S. K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.
22.
Depina
,
I.
,
Le
,
T. M. H.
,
Fenton
,
G.
, and
Eiksund
,
G.
,
2016
, “
Reliability Analysis With Metamodel Line Sampling
,”
Struct. Saf.
,
60
, pp.
1
15
.
23.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
.
24.
Xue
,
G.
,
Dai
,
H.
,
Zhang
,
H.
, and
Wang
,
W.
,
2017
, “
A New Unbiased Metamodel Method for Efficient Reliability Analysis
,”
Struct. Saf.
,
67
, pp.
1
10
.
25.
Huang
,
X.
,
Chen
,
J.
, and
Zhu
,
H.
,
2016
, “
Assessing Small Failure Probabilities by AK–SS: An Active Learning Method Combining Kriging and Subset Simulation
,”
Struct. Saf.
,
59
, pp.
86
95
.
26.
Gaspar
,
B.
,
Teixeira
,
A.
, and
Soares
,
C. G.
,
2017
, “
Adaptive Surrogate Model With Active Refinement Combining Kriging and a Trust Region Method
,”
Reliab. Eng. Syst. Saf.
,
165
, pp.
277
291
.
27.
Cadini
,
F.
,
Santos
,
F.
, and
Zio
,
E.
,
2014
, “
An Improved Adaptive Kriging-Based Importance Technique for Sampling Multiple Failure Regions of Low Probability
,”
Reliab. Eng. Syst. Saf.
,
131
, pp.
109
117
.
28.
Zhao
,
H.
,
Yue
,
Z.
,
Liu
,
Y.
,
Gao
,
Z.
, and
Zhang
,
Y.
,
2015
, “
An Efficient Reliability Method Combining Adaptive Importance Sampling and Kriging Metamodel
,”
Appl. Math. Modell.
,
39
(
7
), pp.
1853
1866
.
29.
Yuan
,
X.
,
Lu
,
Z.
,
Zhou
,
C.
, and
Yue
,
Z.
,
2013
, “
A Novel Adaptive Importance Sampling Algorithm Based on Markov Chain and Low-Discrepancy Sequence
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
253
261
.
30.
Ang
,
G. L.
,
Ang
,
A. H.-S.
, and
Tang
,
W. H.
,
1992
, “
Optimal Importance-Sampling Density Estimator
,”
J. Eng. Mech.
,
118
(
6
), pp.
1146
1163
.
31.
Zhao
,
L.
,
Choi
,
K. K.
,
Lee
,
I.
, and
Du
,
L.
,
2009
, “Response Surface Method Using Sequential Sampling for Reliability-Based Design Optimization,”
ASME
Paper No. DETC2009-87084.
32.
Li
,
X.
,
Qiu
,
H.
,
Chen
,
Z.
,
Gao
,
L.
, and
Shao
,
X.
,
2016
, “
A Local Kriging Approximation Method Using MPP for Reliability-Based Design Optimization
,”
Comput. Struct.
,
162
, pp.
102
115
.
33.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2012
, “
Efficient Global Surrogate Modeling for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011009
.
34.
Dubourg
,
V.
, and
Sudret
,
B.
,
2014
, “
Meta-Model-Based Importance Sampling for Reliability Sensitivity Analysis
,”
Struct. Saf.
,
49
, pp.
27
36
.
35.
Schueremans
,
L.
, and
Van Gemert
,
D.
,
2005
, “
Benefit of Splines and Neural Networks in Simulation Based Structural Reliability Analysis
,”
Struct. Saf.
,
27
(
3
), pp.
246
261
.
36.
Youn
,
B.
,
Choi
,
K.
,
Yang
,
R.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
272
283
.
You do not currently have access to this content.