Abstract

Due to the uncertainties and the dynamic parameters from design, manufacturing, and working conditions, many engineering structures usually show uncertain and dynamic properties. This paper proposes a novel time-variant reliability analysis method using failure processes decomposition to transform the time-variant reliability problems to the time-invariant problems for dynamic structures under uncertainties. The transformation is achieved via a two-stage failure processes decomposition. First, the limit state function with high dimensional input variables and high order temporal parameters is transformed to a quadratic function of time based on the optimized time point in the first-stage failure processes decomposition. Second, based on the characteristics of the quadratic function and reliability criterion, the time-variant reliability problem is then transformed to a time-invariant system reliability problem in the second-stage failure processes decomposition. Then, the kernel density estimation (KDE) method is finally employed for the system reliability evaluation. Several examples are used to verify the effectiveness of the proposed method to demonstrate its efficiency and accuracy.

References

1.
Wang
,
Z.
,
Cheng
,
X.
, and
Liu
,
J.
,
2017
, “
Time-Dependent Concurrent Reliability-Based Design Optimization Integrating Experiment-Based Model Validation
,”
Struct. Multidiscip. Optim.
, epub.10.1007/s00158-017-1823-0
2.
Wang
,
Z.
,
Huang
,
H.
, and
Du
,
X.
,
2010
, “
Optimal Design Accounting for Reliability, Maintenance, and Warranty
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011007
.10.1115/1.4000638
3.
Wang
,
Z.
,
Huang
,
H.
, and
Liu
,
Y.
,
2010
, “
A Unified Framework for Integrated Optimization Under Uncertainty
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051008
.10.1115/1.4001526
4.
Zhao
,
Y.
, and
Ono
,
T.
,
2001
, “
Moment Methods for Structural Reliability
,”
Struct. Saf.
,
23
(
1
), pp.
47
75
.10.1016/S0167-4730(00)00027-8
5.
Van Noortwijk
,
J. M.
,
Van Der Weide
,
J. A.
,
Kallen
,
M. J.
, and
Pandey
,
M. D.
,
2007
, “
Gamma Processes and Peaks-Over-Threshold Distributions for Time-Dependent
,”
Reliab. Eng. Syst. Saf.
,
92
(
12
), pp.
1651
1658
.10.1016/j.ress.2006.11.003
6.
Wang
,
Y.
, and
Pham
,
H.
,
2012
, “
Modeling the Dependent Competing Risks With Multiple Degradation Processes and Random Shock Using Time-Varying Copulas
,”
IEEE Trans. Reliab.
,
61
(
1
), pp.
13
22
.10.1109/TR.2011.2170253
7.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.10.1115/1.4007931
8.
Chen
,
J.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
.10.1016/j.strusafe.2006.02.002
9.
Li
,
J.
,
Chen
,
J.
, and
Fan
,
W.
,
2007
, “
The Equivalent Extreme-Value Event and Evaluation of the Structural System Reliability
,”
Struct. Saf.
,
29
(
2
), pp.
112
131
.10.1016/j.strusafe.2006.03.002
10.
Giuseppe
,
M.
,
Roberta
,
S.
, and
Alba
,
S.
,
2016
, “
Reliability Analysis of Structures With Interval Uncertainties Under Stationary Stochastic Excitations
,”
Comput. Methods Appl. Mech. Eng.
,
300
, pp.
47
69
.10.1016/j.cma.2015.10.023
11.
Nikolaidis
,
E.
,
2007
, “Assessment of Imprecise Reliability Using Efficient Probabilistic Reanalysis,”
SAE
Paper No. 2007-01-0552.10.4271/2007-01-0552
12.
Singh
,
A.
,
Mourelatos
,
Z.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.10.1115/1.4002200
13.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
.10.1115/1.1561042
14.
Majcher
,
M.
,
Mourelatos
,
Z.
, and
Tsianika
,
V.
,
2017
, “
Time-Dependent Reliability Analysis Using a Modified Composite Limit State Approach
,”
SAE Int. J. Commer. Veh.
,
10
(
1
), pp.
66
72
.10.4271/2017-01-0206
15.
Guo
,
X.
, and
Cheng
,
G.
,
2010
, “
Recent Development in Structural Design and Optimization
,”
Acta Mech. Sin.
,
26
(
6
), pp.
807
823
.10.1007/s10409-010-0395-7
16.
Kaminski
,
M.
,
2003
,
The Stochastic Perturbation Method for Computational Mechanics
,
Wiley
, Chichester, UK.
17.
Zhou
,
X.
,
Gosling
,
P.
,
Ullah
,
Z.
, and
Pearce
,
C.
,
2016
, “
Exploiting the Benefits of Multi-Scale Analysis in Reliability Analysis for Composite Structures
,”
Compos. Struct.
,
155
, pp.
197
212
.10.1016/j.compstruct.2016.08.015
18.
Gnedenko
,
B.
,
Belyayev
,
Y.
, and
Solovyev
,
A.
,
2014
,
Mathematical Methods of Reliability Theory
,
Academic Press
, New York.
19.
Sudret
,
B.
,
2008
, “
Analytical Derivation of the Outcrossing Rate in Time-Variant Reliability Problems
,”
Struct. Infrastruct. Eng.
,
4
(
5
), pp.
353
362
.10.1080/15732470701270058
20.
Rice
,
S.
,
1944
, “
Mathematical Analysis of Random Noise
,”
Bell Syst. Tech. J.
,
23
(
3
), pp.
282
332
.10.1002/j.1538-7305.1944.tb00874.x
21.
Du
,
X.
,
2014
, “
Time-Dependent Mechanism Reliability Analysis With Envelope Functions and First-Order Approximation
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081010
.10.1115/1.4027636
22.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.10.1007/s00158-013-0937-2
23.
Beck
,
A. T.
, and
Melchers
,
R. E.
,
2004
, “
On the Ensemble Crossing Rate Approach to Time-Variant Reliability Analysis of Uncertain Structures
,”
Probab. Eng. Mech.
,
19
(
1–2
), pp.
9
19
.10.1016/j.probengmech.2003.11.018
24.
Jiang
,
C.
,
Wei
,
X.
,
Huang
,
Z.
, and
Liu
,
J.
,
2017
, “
An Outcrossing Rate Model and Its Efficient Calculation for Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041402
.10.1115/1.4035792
25.
Zhang
,
Y.
,
Wen
,
B.
, and
Liu
,
Q.
,
1998
, “
First Passage of Uncertain Single Degree-of-Freedom Nonlinear Oscillators
,”
Comput. Methods Appl. Mech. Eng.
,
165
(
1–4
), pp.
223
231
.10.1016/S0045-7825(98)00042-5
26.
Sundar
,
V.
, and
Manohar
,
C.
,
2013
, “
Time Variant Reliability Model Updating in Instrumented Dynamical Systems Based on Girsanov's Transformation
,”
Int. J. Non-Linear Mech.
,
52
, pp.
32
40
.10.1016/j.ijnonlinmec.2013.02.002
27.
Bansal
,
S.
, and
Cheung
,
S.
,
2017
, “
A New Stochastic Simulation Algorithm for Updating Robust Reliability of Linear Structural Dynamic Systems Subjected to Future Gaussian Excitations
,”
Methods Appl. Mech. Eng.
,
326
, pp.
481
504
.10.1016/j.cma.2017.07.032
28.
Breitung
,
K.
, and
Rackwitz
,
R.
,
1982
, “
Nonlinear Combination of Load Processes
,”
Mech. Based Des. Struct.
,
10
(
2
), pp.
145
166
.10.1080/03601218208907407
29.
Gupta
,
S.
, and
Manohar
,
C.
,
2004
, “
Improved Response Surface Method for Time-Variant Reliability Analysis of Nonlinear Random Structures Under Non-Stationary Excitations
,”
Nonlinear Dyn.
,
36
(
2–4
), pp.
267
280
.10.1023/B:NODY.0000045519.49715.93
30.
Zayed
,
A.
,
Garbatov
,
Y.
, and
Soares
,
C.
,
2013
, “
Time Variant Reliability Assessment of Ship Structures With Fast Integration Techniques
,”
Probab. Eng. Mech.
,
32
, pp.
93
102
.10.1016/j.probengmech.2013.01.002
31.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.10.1016/j.ress.2003.10.005
32.
Singh
,
A.
, and
Mourelatos
,
Z.
,
2010
, “
On the Time-Dependent Reliability of Non-Monotonic, Non-Repairable Systems
,”
SAE Int. J. Mater. Manuf.
,
3
(
1
), pp.
425
444
.10.4271/2010-01-0696
33.
Wang
,
Z.
,
Zhang
,
X.
,
Huang
,
H.
, and
Mourelatos
,
Z.
,
2016
, “
A Simulation Method to Estimate Two Types of Time-Varying Failure Rate of Dynamic Systems
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121404
.10.1115/1.4034300
34.
Singh
,
A.
,
Mourelatos
,
Z.
, and
Nikolaidis
,
E.
,
2011
, “
Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
929
946
.10.4271/2011-01-0728
35.
Papaioannou
,
I.
,
Betz
,
W.
,
Zwirglmaier
,
K.
, and
Straub
,
D.
,
2015
, “
MCMC Algorithms for Subset Simulation
,”
Probab. Eng. Mech.
,
41
, pp.
89
103
.10.1016/j.probengmech.2015.06.006
36.
Ching
,
J.
,
Au
,
S. K.
, and
Beck
,
J. L.
,
2005
, “
Reliability Estimation for Dynamical Systems Subject to Stochastic Excitation Using Subset Simulation With Splitting
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1557
1579
.10.1016/j.cma.2004.05.028
37.
Wang
,
Z.
,
Mourelatos
,
Z.
,
Li
,
J.
,
Baseski
,
I.
, and
Singh
,
A.
,
2014
, “
Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061008
.10.1115/1.4027162
38.
Zhao
,
Y.
, and
Ang
,
A. H.-S.
,
2003
, “
System Reliability Assessment by Method of Moments
,”
J. Struct. Eng.
,
129
(
10
), pp.
1341
1349
.10.1061/(ASCE)0733-9445(2003)129:10(1341)
39.
Ang
,
A. H.-S.
,
Abdelnour
,
J.
, and
Chaker
,
A.
,
1975
, “
Analysis of Activity Networks Under Uncertainty
,”
J. Eng. Mech. Div.
,
101
(
4
), pp.
373
87
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006148
40.
Rosenblatt
,
M.
,
1956
, “
Remarks on Some Nonparametric Estimates of a Density Function
,”
Ann. Math. Stat.
,
27
(
3
), pp.
832
837
.10.1214/aoms/1177728190
41.
Parzen
,
E.
,
1962
, “
On Estimation of a Probability Density Function and Mode
,”
Ann. Math. Stat.
,
33
(
3
), pp.
1065
1076
.10.1214/aoms/1177704472
42.
Yu
,
S.
,
Wang
,
Z.
, and
Zhang
,
K.
,
2018
, “
Sequential Time-Dependent Reliability Analysis for the Lower Extremity Exoskeleton Under Uncertainty
,”
Reliab. Eng. Syst. Saf.
,
170
, pp.
45
52
.10.1016/j.ress.2017.10.006
You do not currently have access to this content.