To avoid the negative influence of sliding contact, this paper tries to investigate the spiral bevels of pure-rolling contact that can be manufactured by existing manufacture technology. In this process, spatial conjugate curve meshing theory and conjugate surface theory are both introduced to investigate the geometric principles and face hobbing process of the pure-rolling contact epicycloid bevel (PCEB for short in this paper). The tooth surface models of PCEBs by face hobbing process are obtained. Next, a sample is represented to show an application of this model. Then, finite element analysis (FEA) is applied to investigate the contact mechanics characteristics of these gears. Finally, the performance experiment of a prototype is completed to evaluate the deviations between theoretical expectations and practical results. From the FEA and experimental results, it is concluded that the PCEBs can mesh correctly and achieve a higher transmission efficiency.

References

References
1.
Michlin
,
Y.
, and
Myunster
,
V.
,
2002
, “
Determination of Power Losses in Gear Transmissions With Rolling and Sliding Friction Incorporated
,”
Mech. Mach. Theory
,
37
(
2
), pp.
167
174
.
2.
Fernandes
,
P. J. L.
, and
McDuling
,
C.
,
1997
, “
Surface Contact Fatigue Failures in Gears
,”
Eng. Failure Anal.
,
4
(
2
), pp.
99
107
.
3.
Ristivojević
,
M.
,
Lazović
,
T.
, and
Vencl
,
A.
,
2013
, “
Studying the Load Carrying Capacity of Spur Gear Tooth Flanks
,”
Mech. Mach. Theory
,
59
, pp.
125
137
.
4.
Wagner
,
M. J.
,
Ng
,
W. F.
, and
Dhande
,
S. G.
,
1992
, “
Profile Synthesis and Kinematic Analysis of Pure Rolling Contact Gears
,”
ASME J. Mech. Des.
,
114
(
2
), pp.
326
333
.
5.
Chen
,
C.-H.
,
1995
, “
A Formula for Determining Limit Noninterference Curvature in Pure Rolling Conjugation Gears by Using Geometro-Kinematical Concepts
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
180
184
.
6.
Song
,
Y.
,
Liao
,
Q.
,
Wei
,
S.
,
Guo
,
L.
,
Song
,
H.
, and
Zhou
,
L.
,
2014
, “
Modelling, Simulation and Experiment of a Novel Pure Rolling Cycloid Reducer With Involute Teeth
,”
Int. J. Modell., Identif. Control
,
21
(
2
), pp.
184
192
.
7.
Tan
,
R.
,
Chen
,
B.
, and
Peng
,
C.
,
2015
, “
General Mathematical Model of Spiral Bevel Gears of Continuous Pure-Rolling Contact
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
15
), pp.
2810
2826
.
8.
Wildhaber
,
E.
,
1956
, “
Surface Curvature
,”
Prod. Eng.
,
27
(
5
), pp.
184
191
.
9.
Baxter
,
M. L.
,
1973
, “
Second-Order Surface Generation
,”
Ind. Math.
,
23
(
Pt 2
), pp.
85
106
.
10.
Tsai
,
Y. C.
, and
Chin
,
P. C.
,
1987
, “
Surface Geometry of Straight and Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
109
(
4
), pp.
443
449
.
11.
Litvin
,
F. L.
, and
Zhang
,
Y.
,
1991
, “Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears,” NASA Lewis Research Center, Cleveland, OH, NASA Contractor Report No.
4342
.
12.
Fan
,
Q.
,
2005
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1315
1327
.
13.
Ding
,
H.
,
Zhou
,
Y.
,
Tang
,
J.
,
Zhong
,
J.
,
Zhou
,
Z.
, and
Wan
,
G.
,
2017
, “
A Novel Operation Approach to Determine Initial Contact Point for Tooth Contact Analysis With Errors of Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
109
, pp.
155
170
.
14.
Gonzalez-Perez
,
I.
, and
Fuentes-Aznar
,
A.
,
2017
, “
Analytical Determination of Basic Machine-Tool Settings for Generation of Spiral Bevel Gears and Compensation of Errors of Alignment in the Cyclo-Palloid System
,”
Int. J. Mech. Sci.
,
120
, pp.
91
104
.
15.
Simon
,
V.
,
2013
, “
Design of Face-Hobbed Spiral Bevel Gears With Reduced Maximum Tooth Contact Pressure and Transmission Errors
,”
Chin. J. Aeronaut.
,
26
(
3
), pp.
777
790
.
16.
Simon
,
V. V.
,
2014
, “
Manufacture of Optimized Face-Hobbed Spiral Bevel Gears on Computer Numerical Control Hypoid Generator
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031008
.
17.
Nishino
,
T.
,
2009
, “
Computerized Modeling and Loaded Tooth Contact Analysis of Hypoid Gears Manufactured by Face Hobbing Process
,”
J. Adv. Mech. Des., Syst., Manuf.
,
3
(
3
), pp.
224
235
.
18.
Kolivand
,
M.
,
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
Prediction of Mechanical Gear Mesh Efficiency of Hypoid Gear Pairs
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1568
1582
.
19.
Mo
,
S.
, and
Zhang
,
Y.
,
2015
, “
Spiral Bevel Gear True Tooth Surface Precise Modeling and Experiments Studies Based on Machining Adjustment Parameters
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
14
), pp.
2524
2533
.
20.
Tan
,
R.
,
Chen
,
B.
,
Peng
,
C.
, and
Li
,
X.
,
2015
, “
Study on Spatial Curve Meshing and Its Application for Logarithmic Spiral Bevel Gears
,”
Mech. Mach. Theory
,
86
, pp.
172
190
.
21.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
, Cambridge, UK.
22.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Gonzalez-Perez
,
I.
,
Carnevali
,
L.
, and
Sep
,
T. M.
,
2002
, “
New Version of Novikov–Wildhaber Helical Gears: Computerized Design, Simulation of Meshing and Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
49–50
), pp.
5707
5740
.
23.
Popov
,
V. L.
,
2010
,
Contact Mechanics and Friction: Physical Principles and Applications
,
Springer-Verlag
,
Berlin
.
24.
Olver
,
A. V.
,
2002
, “
Gear Lubrication—A Review
,”
Proc. Inst. Mech. Eng., Part J
,
216
(
5
), pp.
255
267
.
You do not currently have access to this content.