Part consolidation (PC) is one of the typical design freedoms enabled by additive manufacturing (AM) processes. However, how to select potential candidates for PC is rarely discussed. This deficiency has hindered AM from wider applications in industry. Currently available design guidelines are based on obsolete heuristic rules provided for conventional manufacturing processes. This paper first revises these rules to take account of AM constraints and lifecycle factors so that efforts can be saved and used at the downstream detailed design stage. To automate the implementation of these revised rules, a numerical approach named PC candidate detection (PCCD) framework is proposed. This framework is comprised of two steps: construct functional and physical interaction (FPI) network and PCCD algorithm. FPI network is to abstractly represent the interaction relations between components as a graph whose nodes and edges have defined physical attributes. These attributes are taken as inputs for the PCCD algorithm to verify conformance to the revised rules. In this PCCD algorithm, verification sequence of rules, conflict handling, and the optimum grouping approach with the minimum part count are studied. Compared to manual ad hoc design practices, the proposed PCCD method shows promise in repeatability, retrievability, and efficiency. Two case studies of a throttle pedal and a tripod are presented to show the application and effectiveness of the proposed methods.

References

References
1.
Boothroyd
,
G.
,
Dewhurst
,
P.
,
Knight
,
W. A.
, and
Press
,
C.
,
2002
,
Product Design for Manufacture and Assembly
,
M. Dekker
,
New York
.
2.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
Assembly-Level Design for Additive Manufacturing: Issues and Benchmark
,”
ASME
Paper No. DETC2016-59565.
3.
Yang
,
S.
, and
Zhao
,
Y.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1–4
), pp.
327
342
.
4.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “(
Re) Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111711
.
5.
GE Capital
,
2013
, “
Additive Manufacturing Redefining What's Possible
,” Industry Research Monitor: Additive Manufacturing, GE capital, Boston, MA, accessed Nov. 1, 2017, https://www.scribd.com/document/235540644/2013-GE-Capital-Additive-Manufacturing-Fall-2013
6.
Dietrich
,
D. M.
, and
Cudney
,
E.
,
2011
, “
Impact of Integrative Design on Additive Manufacturing Quality
,”
Int. J. Rapid Manuf.
,
2
(
3
), pp.
121
131
.
7.
GE Capital
,
2017
, “
An Epiphany Of Disruption: GE Additive Chief Explains How 3D Printing Will Upend Manufacturing
,” GE Capital, Boston, MA, accessed May 1, 2017, http://www.ge.com/reports/epiphany-disruption-ge-additive-chief-explains-3d-printing-will-upend-manufacturing/
8.
Kumke
,
M.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2016
, “
A New Methodological Framework for Design for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
11
(
1
), pp.
3
19
.
9.
Yang
,
S.
,
Talekar
,
T.
,
Sulthan
,
M. A.
, and
Zhao
,
Y. F.
,
2017
, “
A Generic Sustainability Assessment Model Towards Consolidated Parts Fabricated by Additive Manufacturing Process
,”
Procedia Manuf.
,
10
, pp.
831
844
.
10.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies:Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
11.
Mehrali
,
M.
,
Shirazi
,
F. S.
,
Mehrali
,
M.
,
Metselaar
,
H. S. C.
,
Kadri
,
N. A. B.
, and
Osman
,
N. A. A.
,
2013
, “
Dental Implants From Functionally Graded Materials
,”
J. Biomed. Mater. Res. Part A
,
101
(
10
), pp.
3046
3057
.
12.
Frey
,
D.
,
Palladino
,
J.
,
Sullivan
,
J.
, and
Atherton
,
M.
,
2007
, “
Part Count and Design of Robust Systems
,”
Syst. Eng.
,
10
(
3
), pp.
203
221
.
13.
Fagade
,
A. A.
, and
Kazmer
,
D.
, 1999, “
Optimal Component Consolidation in Molded Product Design
,” Fourth Design for Manufacturing Conference: Design Engineering Technical Conferences, Las Vegas, NV, Sept. 12, Paper No.
DETC1999/DFM-8921
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.195.8847&rep=rep1&type=pdf
14.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
, and
Ahuja
,
B.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
737
760
.
15.
Rosen
,
D. W.
,
2016
, “
A Review of Synthesis Methods for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
11
(
4
), pp.
305
317
.
16.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graph. (TOG)
,
31
(
6
), pp.
130
134
.
17.
Hedia
,
H.
,
Aldousari
,
S.
,
Abdellatif
,
A.
, and
Fouda
,
N.
,
2014
, “
A New Design of Cemented Stem Using Functionally Graded Materials (FGM)
,”
Bio-Med. Mater. Eng.
,
24
(
3
), pp.
1575
1588
.
18.
Kataria
,
A.
, and
Rosen
,
D. W.
,
2001
, “
Building around Inserts: Methods for Fabricating Complex Devices in Stereolithography
,”
Rapid Prototyping J.
,
7
(
5
), pp.
253
261
.
19.
Panesar
,
A.
,
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2015
, “
Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111414
.
20.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
.
21.
Lindemann
,
C.
,
Reiher
,
T.
,
Jahnke
,
U.
, and
Koch
,
R.
,
2015
, “
Towards a Sustainable and Economic Selection of Part Candidates for Additive Manufacturing
,”
Rapid Prototyping J.
,
21
(
2
), pp.
216
227
.
22.
Klahn
,
C.
,
Leutenecker
,
B.
, and
Meboldt
,
M.
,
2015
, “
Design Strategies for the Process of Additive Manufacturing
,”
Procedia CIRP
,
36
, pp.
230
235
.
23.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2015
, “
A New Part Consolidation Method to Embrace the Design Freedom of Additive Manufacturing
,”
J. Manuf. Processes
,
20
(
Part 3
), pp.
444
449
.
24.
Reiher
,
T.
,
Lindemann
,
C.
,
Jahnke
,
U.
,
Deppe
,
G.
, and
Koch
,
R.
,
2017
, “
Holistic Approach for Industrializing AM Technology: From Part Selection to Test and Verification
,”
Prog. Addit. Manuf.
,
2
(
1–2
), pp.
43
55
.
25.
Prakash
,
W. N.
,
Sridhar
,
V. G.
, and
Annamalai
,
K.
,
2014
, “
New Product Development by DFMA and Rapid Prototyping
,”
ARPN J. Eng. Appl. Sci.
,
9
(
3
), pp.
274
279
.https://pdfs.semanticscholar.org/ee25/9278fff118875b172de71ca413c8045b38fc.pdf
26.
Savransky
,
S. D.
,
2000
,
Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving
,
CRC Press
, Boca Raton, FL.
27.
Gu
,
P.
, and
Sosale
,
S.
,
1999
, “
Product Modularization for Life Cycle Engineering
,”
Rob. Comput.-Integr. Manuf.
,
15
(
5
), pp.
387
401
.
28.
Li
,
Y.
,
Wang
,
Z.
,
Zhang
,
L.
,
Chu
,
X.
, and
Xue
,
D.
,
2017
, “
Function Module Partition for Complex Products and Systems Based on Weighted and Directed Complex Networks
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021101
.
29.
Sosa
,
M. E.
,
Eppinger
,
S. D.
, and
Rowles
,
C. M.
,
2003
, “
Identifying Modular and Integrative Systems and Their Impact on Design Team Interactions
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
240
252
.
30.
De Mello
,
L. S. H.
, and
Lee
,
S.
,
2012
,
Computer-Aided Mechanical Assembly Planning
,
Springer Science & Business Media
,
New York
.
31.
Campbell
,
M.
,
2016
, “
Automated Assembly Planning: From CAD Model to Virtual Assembly Process 14-02-04
,” UI Labs, Chicago, IL, accessed Nov. 1, 2017, http://www.uilabs.org/innovation-platforms/manufacturing/projects/
32.
Miessner
,
H.
,
2015
, “
Throttle Pedal Design Challenge
,” GrabCAD, Cambridge, MA, accessed Nov. 1, 2017, https://grabcad.com/library/pedal-one-microtechnologies-1
33.
Newman
,
M. E.
, and
Girvan
,
M.
,
2004
, “
Finding and Evaluating Community Structure in Networks
,”
Phys. Rev. E
,
69
(
2
), p.
026113
.
You do not currently have access to this content.