Design documents and design project footprints accumulated by corporate information technology systems have increasingly become valuable sources of evidence for design information and knowledge management. Identification and extraction of such embedded information and knowledge into a clear and usable format will greatly accelerate continuous learning from past design efforts for competitive product innovation and efficient design process management in future design projects. Most of the existing design information extraction systems focus on either organizing design documents for efficient retrieval or extracting relevant product information for product optimization. Different from traditional systems, this paper proposes a methodology of learning and extracting useful knowledge using past design project documents from design process perspective based on process mining techniques. Particularly different from conventional techniques that deal with timestamps or event logs only, a new process mining approach that is able to directly process textual data is proposed at the first stage of the proposed methodology. The outcome is a hierarchical process model that reveals the actual design process hidden behind a large amount of design documents and enables the connection of various design information from different perspectives. At the second stage, the discovered process model is analyzed to extract multifaceted knowledge patterns by applying a number of statistical analysis methods. The outcomes range from task dependency study from workflow analysis, identification of irregular task execution from performance analysis, cooperation pattern discovery from social net analysis to evaluation of personal contribution based on role analysis. Relying on the knowledge patterns extracted, lessons and best practices can be uncovered which offer great support to decision makers in managing any future design initiatives. The proposed methodology was tested using an email dataset from a university-hosted multiyear multidisciplinary design project.

References

References
1.
Kotinurmi
,
P.
,
Laesvuori
,
H.
,
Jokinen
,
K.
, and
Soininen
,
T.
,
2004
, “
Integrating Design Document Management Systems Using the Rosettanet E-Business Framework
,” 6th International Conference on Enterprise Information Systems (
ICEIS
2004), Porto, Portugal, Apr. 14–17, pp.
502
509
.
2.
Linas
,
G.
, and
Romualdas
,
B.
,
2006
, “
Electronic Document Management in Building Design
,”
J. Civ. Eng. Manage.
,
12
(
2
), pp.
103
108
.
3.
Efthymiou
,
K.
,
Sipsas
,
K.
,
Mourtzis
,
D.
, and
Chryssolouris
,
G.
,
2015
, “
On Knowledge Reuse for Manufacturing Systems Design and Planning: A Semantic Technology Approach
,”
CIRP J. Manuf. Sci. Technol.
,
8
, pp.
1
11
.
4.
Baxter
,
D.
,
Gao
,
J.
,
Case
,
K.
,
Harding
,
J.
,
Young
,
B.
,
Cochrane
,
S.
, and
Dani
,
S.
,
2007
, “
An Engineering Design Knowledge Reuse Methodology Using Process Modelling
,”
Res. Eng. Des.
,
18
(
1
), pp.
37
48
.
5.
van der Aalst
,
W. M. P.
,
Weijters
,
T.
, and
Maruster
,
L.
,
2004
, “
Workflow Mining: Discovering Process Models From Event Logs
,”
IEEE Trans. Knowl. Data Eng.
,
16
(
9
), pp.
1128
1142
.
6.
Browning
,
T. R.
,
Fricke
,
E.
, and
Negele
,
H.
,
2006
, “
Key Concepts in Modeling Product Development Processes
,”
Syst. Eng.
,
9
(
2
), pp.
104
128
.
7.
Lan
,
L.
,
Liu
,
Y.
, and
Lu
,
W. F.
,
2016
, “
Discovering a Hierarchical Design Process Model Using Text Mining
,”
ASME
Paper No. DETC2016-59829.
8.
Tao
,
S.
,
Huang
,
Z.
,
Ma
,
L.
,
Guo
,
S.
,
Wang
,
S.
, and
Xie
,
Y.
,
2013
, “
Partial Retrieval of CAD Models Based on Local Surface Region Decomposition
,”
Comput.-Aided Des.
,
45
(
11
), pp.
1239
1252
.
9.
Tao
,
S.
,
Wang
,
S.
, and
Chen
,
A.
,
2017
, “
3D CAD Solid Model Retrieval Based on Region Segmentation
,”
Multimedia Tools Appl.
,
76
(
1
), pp.
103
121
.
10.
Sivakumar
,
S.
, and
Dhanalakshmi
,
V.
,
2013
, “
An Approach Towards the Integration of CAD/CAM/CAI Through STEP File Using Feature Extraction for Cylindrical Parts
,”
Int. J. Comput. Integr. Manuf.
,
26
(
6
), pp.
561
570
.
11.
Yu
,
W. D.
, and
Hsu
,
J. Y.
,
2013
, “
Content-Based Text Mining Technique for Retrieval of CAD Documents
,”
Autom. Constr.
,
31
, pp.
65
74
.
12.
Huang
,
R.
,
Zhang
,
S.
,
Bai
,
X.
,
Xu
,
C.
, and
Huang
,
B.
,
2015
, “
An Effective Subpart Retrieval Approach of 3D CAD Models for Manufacturing Process Reuse
,”
Comput. Ind.
,
67
, pp.
38
53
.
13.
Liang
,
Y.
,
Liu
,
Y.
,
Kwong
,
C.
, and
Lee
,
W.
,
2012
, “
Learning the ‘Whys’: Discovering Design Rationale Using Text Mining—An Algorithm Perspective
,”
Comput.-Aided Des.
,
44
(
10
), pp.
916
930
.
14.
Jin
,
J.
,
Ji
,
P.
, and
Liu
,
Y.
,
2015
, “
Translating Online Customer Opinions Into Engineering Characteristics in QFD: A Probabilistic Language Analysis Approach
,”
Eng. Appl. Artif. Intell.
,
41
, pp.
115
127
.
15.
Rajpathak
,
D. G.
,
2013
, “
An Ontology Based Text Mining System for Knowledge Discovery From the Diagnosis Data in the Automotive Domain
,”
Comput. Ind.
,
64
(
5
), pp.
565
580
.
16.
Lan
,
L.
,
Liu
,
Y.
,
Lu
,
W.
, and
Alghamdi
,
A.
,
2015
, “
Automatic Discovery of Design Task Structure Using Deep Belief Nets
,”
ASME
Paper No. DETC2015-47369.
17.
Liu
,
Y.
,
Liang
,
Y.
,
Kwong
,
C. K.
, and
Lee
,
W. B.
,
2010
, “
A New Design Rationale Representation Model for Rationale Mining
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031009
.
18.
Jin
,
G.
,
Jeong
,
Y.
, and
Yoon
,
B.
,
2015
, “
Technology-Driven Roadmaps for Identifying New Product/Market Opportunities: Use of Text Mining and Quality Function Deployment
,”
Adv. Eng. Inf.
,
29
(
1
), pp.
126
138
.
19.
Jans
,
M.
,
van der Werf
,
J. M.
,
Lybaert
,
N.
, and
Vanhoof
,
K.
,
2011
, “
A Business Process Mining Application for Internal Transaction Fraud Mitigation
,”
Expert Syst. Appl.
,
38
(
10
), pp.
13351
13359
.
20.
da Cruz
,
J. I. B.
, and
Ruiz
,
D. D.
,
2011
, “
Conformance Analysis on Software Development: An Experience With Process Mining
,”
Int. J. Bus. Process Integr. Manage.
,
5
(
2
), pp.
109
120
.
21.
Luengo
,
D.
, and
Sepúlveda
,
M.
,
2011
, “
Applying Clustering in Process Mining to Find Different Versions of a Business Process That Changes Over Time
,” International Conference on Business Process Management (
BPM
), Clermont-Ferrand, France, Aug. 29–Sept. 2, pp.
153
158
.
22.
Agrawal
,
R.
,
Gunopulos
,
D.
, and
Leymann
,
F.
,
1998
, “
Mining Process Models From Workflow Logs
,” Sixth International Conference on Extending Database Technology: Advances in Database Technology (
ETBT
), Valencia, Spain, Mar. 23–27, pp.
469
483
.
23.
Tiwari
,
A.
,
Turner
,
C. J.
, and
Majeed
,
B.
,
2008
, “
A Review of Business Process Mining: State-of-the-Art and Future Trends
,”
Bus. Process Manage. J.
,
14
(
1
), pp.
5
22
.
24.
Li
,
J.
,
OuYang
,
J.
, and
Feng
,
M.
,
2012
, “
A Heuristic Genetic Process Mining Algorithm
,” Seventh International Conference on Computational Intelligence and Security (
CIS
), Hainan, China, Dec. 3–4, pp.
15
19
.
25.
Seung-kyung
,
L.
,
Bongseok
,
K.
,
Minhoe
,
H.
,
Sungzoon
,
C.
,
Sungkyu
,
P.
, and
Daehyung
,
L.
,
2013
, “
Mining Transportation Logs for Understanding the After-Assembly Block Manufacturing Process in the Shipbuilding Industry
,”
Expert Syst. Appl.
,
40
(
1
), pp.
83
95
.
26.
Caron
,
F.
,
Vanthienen
,
J.
, and
Baesens
,
B.
,
2013
, “
A Comprehensive Investigation of the Applicability of Process Mining Techniques for Enterprise Risk Management
,”
Comput. Ind.
,
64
(
4
), pp.
464
475
.
27.
De Weerdt
,
J.
,
Schupp
,
A.
,
Vanderloock
,
A.
, and
Baesens
,
B.
,
2013
, “
Process Mining for the Multi-Faceted Analysis of Business Processes—A Case Study in a Financial Services Organization
,”
Comput. Ind.
,
64
(
1
), pp.
57
67
.
28.
Rojas
,
E.
,
Munoz-Gama
,
J.
,
Sepúlveda
,
M.
, and
Capurro
,
D.
,
2016
, “
Process Mining in Healthcare: A Literature Review
,”
J. Biomed. Inf.
,
61
, pp.
224
236
.
29.
Gunther
,
C. W.
, and
van der Aalst
,
W. M. P.
,
2007
, “
Fuzzy Mining—Adaptive Process Simplification Based on Multi-Perspective Metrics
,” Fifth International Conference on Business Process Management (
BPM
2007), Berlin, Sept. 24–28, pp.
328
343
.
30.
Maggi
,
F. M.
,
Mooij
,
A. J.
, and
Van Der Aalst
,
W. M. P.
,
2011
, “
User-Guided Discovery of Declarative Process Models
,” IEEE Symposium on Computational Intelligence and Data Mining (
CIDM
2011), Paris, France, Apr. 11–15, pp.
192
199
.
31.
Maggi
,
F. M.
,
Burattin
,
A.
,
Cimitile
,
M.
, and
Sperduti
,
A.
,
2013
, “
Online Process Discovery to Detect Concept Drifts in LTL-Based Declarative Process Models
,”
OTM
Confederated International Conferences on the Move to Meaningful Internet Systems, Graz, Austria, Sept. 9–13, pp.
94
111
.
32.
Diamantini
,
C.
,
Genga
,
L.
, and
Potena
,
D.
,
2016
, “
Behavioral Process Mining for Unstructured Processes
,”
J. Intell. Inf. Syst.
,
47
(
1
), pp.
5
32
.
33.
Sinha
,
A.
, and
Paradkar
,
A.
,
2010
, “
Use Cases to Process Specifications in Business Process Modeling Notation
,” IEEE International Conference on Web Services (
ICWS
), Miami, FL, July 5–10, pp.
473
480
.
34.
Friedrich
,
F.
,
Mendling
,
J.
, and
Puhlmann
,
F.
,
2011
,
Process Model Generation From Natural Language Text
,
Springer
,
Berlin
.
35.
Hinton
,
G. E.
, and
Salakhutdinov
,
R.
,
2009
, “
Replicated Softmax: An Undirected Topic Model
,” 23rd Annual Conference on Neural Information Processing Systems (
NIPS
2009), Vancouver, BC, Canada, Dec. 7–10, pp.
1607
1614
.
36.
Bengio
,
Y.
,
2009
, “
Learning Deep Architectures for AI
,”
Found. Trends Mach. Learn.
,
2
(
1
), pp.
1
27
.
37.
Manning
,
C. D.
,
Surdeanu
,
M.
,
Bauer
,
J.
,
Finkel
,
J. R.
,
Bethard
,
S.
, and
McClosky
,
D.
,
2014
, “
The Stanford CoreNLP Natural Language Processing Toolkit
,” 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations (
ACL
), Baltimore, MD, June 22–27, pp.
55
60
.
38.
Lan
,
L.
,
Wu
,
X.
, and
Liu
,
Y.
,
2015
, “
Designing a Fast Adaptive Clustering Approach for Traffic Wave Simulation
,”
ASME
Paper No. DETC2015-47873.
You do not currently have access to this content.