Hybrid or ensemble surrogate models developed in recent years have shown a better accuracy compared to individual surrogate models. However, it is still challenging for hybrid surrogate models to always meet the accuracy, robustness, and efficiency requirements for many specific problems. In this paper, an advanced hybrid surrogate model, namely, extended adaptive hybrid functions (E-AHF), is developed, which consists of two major components. The first part automatically filters out the poorly performing individual models and remains the appropriate ones based on the leave-one-out (LOO) cross-validation (CV) error. The second part calculates the adaptive weight factors for each individual surrogate model based on the baseline model and the estimated mean square error in a Gaussian process prediction. A large set of numerical experiments consisting of up to 40 test problems from one dimension to 16 dimensions are used to verify the accuracy and robustness of the proposed model. The results show that both the accuracy and the robustness of E-AHF have been remarkably improved compared with the individual surrogate models and multiple benchmark hybrid surrogate models. The computational time of E-AHF has also been considerately reduced compared with other hybrid models.

References

1.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
, Goel, T., Vaidyanathan R., and Tucker, P. K.,
2005
, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
2.
Song, X., Sun, G., Li, G., Gao, W., and Li, Q., 2013, “
Crashworthiness Optimization of Foam-Filled Tapered Thin-Walled Structure Using Multiple Surrogate Models
,”
Struct. Multidiscipli. Optim.
,
47
(2), pp. 221–231.
3.
Gorissen
,
D.
,
Couckuyt
,
I.
,
Demeester
,
P.
, Dhaene, T., and Crombecq, K.,
2010
, “
A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design
,”
J. Mach. Learn. Res.
,
11
(1), pp.
2051
2055
.
4.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modeling
,”
Proc. R. Soc. London A
,
463
(
2088
), pp.
3251
3269
.
5.
Peri
,
D.
, and
Campana
,
E. F.
,
2005
, “
High-Fidelity Models and Multiobjective Global Optimization Algorithms in Simulation-Based Design
,”
J. Ship Res.
,
49
(
3
), pp.
159
175
.
6.
Yang
,
J.
,
Zhan
,
Z.
,
Zheng
,
K.
, Hu, J., and Zheng, L.,
2016
, “
Enhanced Similarity-Based Metamodel Updating Strategy for Reliability-Based Design Optimization
,”
Eng. Optim.
,
48
(12), pp.
2026
2045
.
7.
Ong
,
Y. S.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and Wong, K. W.,
2005
, “
Surrogate-Assisted Evolutionary Optimization Frameworks for High-Fidelity Engineering Design Problems
,”
Knowledge Incorporation in Evolutionary Computation
,
Springer
,
Berlin
, pp.
307
331
.
8.
Draper
,
N. R.
, and
Smith
,
H.
,
2014
,
Applied Regression Analysis
, 3rd ed.,
Wiley
, New York.
9.
Matheron
,
G.
,
1963
, “
Principles of Geostatistics
,”
Econ. Geol.
,
58
(
8
), pp.
1246
1266
.
10.
Sacks
,
J.
,
Schiller
,
S. B.
, and
Welch
,
W. J.
,
1989
, “
Designs for Computer Experiments
,”
Technometrics
,
31
(
1
), pp.
41
47
.
11.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and Wynn, H. P.,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(4), pp.
409
423
.
12.
Fang
,
H.
, and
Horstemeyer
,
M. F.
,
2006
, “
Global Response Approximation With Radial Basis Functions
,”
Eng. Optim.
,
38
(
4
), pp.
407
424
.
13.
Vapnik
,
V. N.
, and
Vapnik
,
V.
,
1998
,
Statistical Learning Theory
,
Wiley
,
New York
.
14.
Girosi
,
F.
,
1998
, “
An Equivalence Between Sparse Approximation and Support Vector Machines
,”
Neural Comput.
,
10
(
6
), pp.
1455
1480
.
15.
Zhou
,
X. J.
, and
Jiang
,
T.
,
2016
, “
Metamodel Selection Based on Stepwise Regression
,”
Struct. Multidiscip. Optim.
,
54
(3), pp.
641
657
.
16.
Goel
,
T.
,
Haftka
,
R. T.
,
Shyy
,
W.
, and Queipo, N. V.,
2007
, “
Ensemble of Surrogates
,”
Struct. Multidiscip. Optim.
,
33
(
3
), pp.
199
216
.
17.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
18.
Simpson
,
T. W.
,
Mauery
,
T. M.
,
Korte
,
J. J.
, and Mistree, F.,
2001
, “
Kriging Models for Global Approximation in Simulation-Based Multidisciplinary Design Optimization
,”
AIAA J.
,
39
(
12
), pp.
2233
2241
.
19.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
,
2005
, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
20.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
21.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and Horstemeyer, M. F.,
2005
, “
A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization
,”
Comput. Struct.
,
83
(
25–26
), pp.
2121
2136
.
22.
Zerpa
,
L. E.
,
Queipo
,
N. V.
,
Pintos
,
S.
, and Salager, J. L.,
2005
, “
An Optimization Methodology of Alkaline–Surfactant–Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates
,”
J. Pet. Sci. Eng.
,
47
(
3–4
), pp.
197
208
.
23.
Acar
,
E.
, and
Rais-Rohani
,
M.
,
2009
, “
Ensemble of Metamodels With Optimized Weight Factors
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
279
294
.
24.
Ferreira
,
W. G.
, and
Serpa
,
A. L.
,
2016
, “
Ensemble of Metamodels: The Augmented Least Squares Approach
,”
Struct. Multidiscip. Optim.
,
53
(
5
), pp.
1019
1046
.
25.
Viana
,
F. A. C.
,
Haftka
,
R. T.
, and
Steffen
,
V.
, Jr.
,
2009
, “
Multiple Surrogates: How Cross-Validation Errors Can Help Us to Obtain the Best Predictor
,”
Struct. Multidiscip. Optim.
,
39
(
4
), pp.
439
457
.
26.
Acar
,
E.
,
2010
, “
Various Approaches for Constructing an Ensemble of Metamodels Using Local Measures
,”
Struct. Multidiscip. Optim.
,
42
(
6
), pp.
879
896
.
27.
Zhang
,
J.
,
Chowdhury
,
S.
, and
Messac
,
A.
,
2012
, “
An Adaptive Hybrid Surrogate Model
,”
Struct. Multidiscip. Optim.
,
46
(
2
), pp.
223
238
.
28.
Liu
,
H.
,
Xu
,
S.
,
Wang
,
X.
, Meng, J., and Yang, S.,
2016
, “
Optimal Weighted Pointwise Ensemble of Radial Basis Functions With Different Basis Functions
,”
AIAA J.
,
54
(
10
), pp.
3117
3133
.
29.
Forrester
,
A.
,
Sobester
,
A.
, and
Keane
,
A.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Chichester, UK.
30.
Lee
,
Y.
, and
Choi
,
D.
,
2014
, “
Pointwise Ensemble of Meta-Models Using υ Nearest Points Cross-Validation
,”
Struct. Multidiscip. Optim.
,
50
(
3
), pp.
383
394
.
31.
Glaz
,
B.
,
Goel
,
T.
,
Liu
,
L.
, and Haftka, R. T.,
2007
, “Application of a Weighted Average Surrogate Approach to Helicopter Rotor Blade Vibration Reduction,”
AIAA
Paper No. 2007-1898.
32.
Gramacy
,
R. B.
, and
Lee
,
H. K. H.
,
2012
, “
Cases for the Nugget in Modeling Computer Experiments
,”
Stat. Comput.
,
22
(
3
), pp.
713
722
.
33.
Talgorn
,
B.
,
Kokkolaras
,
M.
, and
Digabel
,
S. L.
,
2015
, “
Statistical Surrogate Formulations for Simulation-Based Design Optimization
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021405
.
34.
Mullur
,
A. A.
, and
Messac
,
A.
,
2006
, “
Metamodeling Using Extended Radial Basis Functions: A Comparative Approach
,”
Eng. Comput.
,
21
(
3
), pp.
203
217
.
35.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
, and Shao, X.,
2016
, “
An Enhanced RBF-HDMR Integrated With an Adaptive Sampling Method for Approximating High Dimensional Problems in Engineering Design
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1209
1229
.
36.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
37.
Viana
,
F. A. C.
,
2010
, “SURROGATES Toolbox User's Guide,”
Gainesville
,
FL
.
38.
Brabanter
,
K. D.
,
Karsmakers
,
P.
,
Ojeda
,
F.
,
Alzate
,
C.
,
Brabanter
,
J. D.
,
Pelckmans
,
K.
,
Moor
,
B. D.
,
Vandewalle
,
J.
, and
Suykens
,
J. A. K.
,
2011
, “LS-SVMlab Toolbox User's Guide. Version 1.8,” ESAT-SISTA, Katholieke Universiteit Leuven, Belgium, Technical Report No. 10-146.
39.
Suykens
,
J. A. K.
, and
Vandewalle
,
J.
,
1999
, “
Least Squares Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
(
3
), pp.
293
300
.
You do not currently have access to this content.