Part count reduction (PCR) is one of the typical motivations for using additive manufacturing (AM) processes. However, the implications and trade-offs of employing AM for PCR are not well understood. The deficits are mainly reflected in two aspects: (1) lifecycle-effect analysis of PCR is rare and scattered; (2) current PCR rules lack full consideration of AM capabilities and constraints. To fill these gaps, this paper first summarizes the main effect of general PCR (G-PCR) on lifecycle activities to make designers aware of potential benefits and risks and discusses in a point-to-point fashion the new opportunities and challenges presented by AM-enabled PCR (AM-PCR). Second, a new set of design rules and principles are proposed to support potential candidate detection for AM-PCR. Third, a dual-level screening and refinement design framework is presented aiming at finding the optimal combination of AM-PCR candidates. In this framework, the first level down-samples combinatory space based on the proposed new rules while the second one exhausts and refines each feasible solution via design optimization. A case study of a motorcycle steering assembly is considered to demonstrate the effectiveness of the proposed design rules and framework. In the end, possible challenges and limitations of the presented design framework are discussed.

References

References
1.
Boothroyd
,
G.
,
Dewhurst
,
P.
,
Knight
,
W. A.
, and
Press
,
C.
,
2002
,
Product Design for Manufacture and Assembly
,
Marcel Dekker
,
New York
.
2.
Andreasen
,
M. M.
,
Kähler
,
S.
, and
Lund
,
T.
,
1983
,
Design for Assembly
,
IFS Publications
,
London
.
3.
Chiodo
,
J.
,
2005
, “
Design for Disassembly Guidelines
,” Active Disassembly Research Ltd., Black Rock, Australia, accessed Jan. 19, 2017, http://www.engen.org.au/index_htm_files/DFD-guidelines.pdf
4.
Savransky
,
S. D.
,
2000
,
Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving
,
CRC Press
, Boca Raton, FL.
5.
Suh
,
N. P.
,
1990
,
The Principles of Design
,
Oxford University Press
,
New York
.
6.
Frey
,
D.
,
Palladino
,
J.
,
Sullivan
,
J.
, and
Atherton
,
M.
,
2007
, “
Part Count and Design of Robust Systems
,”
Syst. Eng.
,
10
(
3
), pp.
203
221
.
7.
Altshuller
,
G. S.
,
1984
,
Creativity as an Exact Science
,
Gordon and Breach
,
Philadelphia, PA
.
8.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2015
, “
A New Part Consolidation Method to Embrace the Design Freedom of Additive Manufacturing
,”
J. Manuf. Processes
,
20
(
Pt. 3
), pp.
444
449
.
9.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “(
Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
.
10.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
, New York.
11.
GE Capital
,
2013
, “
Additive Manufacturing Redefining What's Possible
,” GE Capital, Boston, MA, accessed May 10, 2017, https://www.scribd.com/document/235540644/2013-GE-Capital-Additive-Manufacturing-Fall-2013
12.
EOS
,
2016
, “
Functional Integration
,” EOS GmbH, Krailling, Germany, accessed May 10, 2017, https://www.eos.info/functional-integration-39f837a0e69ec898
13.
Yang
,
S.
, and
Zhao
,
Y.
,
2015
, “
Additive Manufacturing-Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(1–4), pp. 327–342.
14.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
, and
Ahuja
,
B.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
737
760
.
15.
Charney
,
C.
,
1991
,
Time to Market: Reducing Product Lead Time
,
Society of Manufacturing Engineers
, Dearborn, MI.
16.
Carlson
,
J. M.
, and
Doyle
,
J.
,
2000
, “
Highly Optimized Tolerance: Robustness and Design in Complex Systems
,”
Phys. Rev. Lett.
,
84
(
11
), p.
2529
.
17.
Mann
,
D.
,
2000
, “
Trimming Evolution Patterns for Complex Systems
,”
TRIZ J.
, pp.
34
38
.https://triz-journal.com/trimming-evolution-patterns-complex-systems/
18.
Swanstrom
,
F. M.
, and
Hawke
,
T.
,
1999,
Design for Manufacturing and Assembly (DFMA): A Case Study in Cost Reduction for Composite Wingtip Structures
,”
31st International SAMPE Technical Conference
, Chicago, IL, Oct. 26–30, pp.
101
113
.https://www.tib.eu/en/search/id/BLCP%3ACN033410906/
19.
Meyer
,
T. N.
,
Kinosz
,
M. J.
,
Bradac
,
E. M.
,
Mbaye
,
M.
,
Burg
,
J. T.
, and
Klingensmith
,
M. A.
,
1999
, “
Ultra Large Castings to Produce Low Cost Aluminum Vehicle Structures
,”
SAE
Paper No. 1999-01-2252.
20.
Huang
,
R.
,
Riddle
,
M.
,
Graziano
,
D.
,
Warren
,
J.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2015
, “
Energy and Emissions Saving Potential of Additive Manufacturing: The Case of Lightweight Aircraft Components
,”
J. Cleaner Prod.
,
135
pp.
1559
1570
.
21.
Gu
,
P.
, and
Sosale
,
S.
,
1999
, “
Product Modularization for Life Cycle Engineering
,”
Rob. Comput.-Integr. Manuf.
,
15
(
5
), pp.
387
401
.
22.
Ferguson
,
N.
, and
Browne
,
J.
,
2001
, “
Issues in End-of-Life Product Recovery and Reverse Logistics
,”
Prod. Plann. Control
,
12
(
5
), pp.
534
547
.
23.
Lucchetta
,
G.
,
Bariani
,
P.
, and
Knight
,
W.
,
2005
, “
Integrated Design Analysis for Product Simplification
,”
CIRP Ann.-Manuf. Technol.
,
54
(
1
), pp.
147
150
.
24.
Johnson
,
M.
, and
Kirchain
,
R.
,
2009
, “
Quantifying the Effects of Parts Consolidation and Development Costs on Material Selection Decisions: A Process-Based Costing Approach
,”
Int. J. Prod. Econ.
,
119
(
1
), pp.
174
186
.
25.
Fagade
,
A. A.
, and
Kazmer
,
D.
, 1999, “
Optimal Component Consolidation in Molded Product Design
,”
Design Engineering Technical Conference
, Las Vegas, NV, Sept. 12–15, pp. 255–265.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.198.6577
26.
Fukushige
,
S.
,
Taniyama
,
S.
, and
Umeda
,
Y.
, 2007, “
Design Methodology for Mass Reduction of a Mechanical Product by Extracting Minimum Structure
,”
Fourth International Conference on Leading Edge Manufacturing in 21st Century (LEM)
, Fukuoka, Japan, Nov. 7–9, pp. 122–129.
27.
Suresh
,
P.
,
Ramabalan
,
S.
, and
Natarajan
,
U.
,
2016
, “
Integration of DFE and DFMA for the Sustainable Development of an Automotive Component
,”
Int. J. Sustainable Eng.
,
9
(
2
), pp.
107
118
.
28.
Chowdary
,
B. V.
, and
Harris
,
A.
, 2009, “
Integration of DFMA and DFE for Development of a Product Concept: A Case Study
,” Seventh Latin American and Caribbean Conference for Engineering and Technology (
LACCE
), San Cristóbal, Venezuela, June 2–5, pp.
1
8
.http://www.laccei.org/LACCEI2009-Venezuela/p65.pdf
29.
Lowe
,
G.
, and
Bogue
,
R.
,
2007
, “
Design for Disassembly: A Critical Twenty-First Century Discipline
,”
Assem. Autom.
,
27
(
4
), pp.
285
289
.
30.
Sachs
,
E.
,
Wylonis
,
E.
,
Allen
,
S.
,
Cima
,
M.
, and
Guo
,
H.
,
2000
, “
Production of Injection Molding Tooling With Conformal Cooling Channels Using the Three Dimensional Printing Process
,”
Polym. Eng. Sci.
,
40
(
5
), pp.
1232
1247
.
31.
Rosen
,
D. W.
,
2016
, “
A Review of Synthesis Methods for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
11
(
4
), pp.
305
317
.
32.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Marc
,
L.
,
2015
, “
Assembly-Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mech. Des.
,
137
(
12
), p.
121701
.
33.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
Assembly-Level Design for Additive Manufacturing: Issues and Benchmark
,”
ASME
Paper No. DETC2016-59565.
34.
Rodrigue
,
H.
, and
Rivette
,
M.
,
2010
, “
An Assembly-Level Design for Additive Manufacturing Methodology
,”
IDMME-Virtual Concept
, Brodeaux, France, Oct. 20–22, pp. 20–29.https://hal.archives-ouvertes.fr/hal-01099485
35.
Kataria
,
A.
, and
Rosen
,
D. W.
,
2001
, “
Building Around Inserts: Methods for Fabricating Complex Devices in Stereolithography
,”
Rapid Prototyping J.
,
7
(
5
), pp.
253
261
.
36.
Oxman
,
N.
,
Keating
,
S.
, and
Tsai
,
E.
,
2011
, “
Functionally Graded Rapid Prototyping
,” Fifth International Conference on Advanced Research in Virtual and Rapid Prototyping (
VRAP
), Leiria, Portugal, Sept. 28–Oct. 1, pp.
483
489
.http://matter.media.mit.edu/publications/article/functionally-graded-rapid-prototyping
37.
Lipson
,
H.
,
Moon
,
F. C.
,
Hai
,
J.
, and
Paventi
,
C.
,
2005
, “
3-D Printing the History of Mechanisms
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1029
1033
.
38.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graph.
,
31
(
6
), p.
130
.
39.
Kumke
,
M.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2016
, “
A New Methodological Framework for Design for Additive Manufacturing
,”
Virtual Phys. Prototyping
,
11
(
1
), pp.
3
19
.
40.
Yang
,
S.
, and
Zhao
,
F. Y.
,
2016
, “
Conceptual Design for Assembly in the Context of Additive Manufacturing
,” 27th Annual International Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 4–8, pp. 1932–1944.http://www.programmaster.org/PM/PM.nsf/ApprovedAbstracts/49BBAA927A4ED3B085257F95007B917F?OpenDocument
41.
Floriane
,
L.
,
Frédéric
,
S.
,
Gianluca
,
D. A.
, and
Marc
,
L. C.
,
2017
, “
Enriching Design With X Through Tailored Additive Manufacturing Knowledge: A Methodological Proposal
,”
Int. J. Interact. Des. Manuf.
,
11
(
2
), pp.
279
288
.
42.
Luo
,
Y.
,
Ji
,
Z.
,
Leu
,
M. C.
, and
Caudill
,
R.
,
1999
, “
Environmental Performance Analysis of Solid Freedom Fabrication Processes
,” IEEE International Symposium on Electronics and the Environment (
ISEE
), Danvers, MA, May 11–13, pp.
1
6
.
43.
Faludi
,
J.
,
Bayley
,
C.
,
Bhogal
,
S.
, and
Iribarne
,
M.
,
2015
, “
Comparing Environmental Impacts of Additive Manufacturing Vs Traditional Machining Via Life-Cycle Assessment
,”
Rapid Prototyping J.
,
21
(
1
), pp.
14
33
.
44.
Watson
,
J. K.
, and
Taminger
,
K. M. B.
, 2018, “
A Decision-Support Model for Selecting Additive Manufacturing Versus Subtractive Manufacturing Based on Energy Consumption
,”
J. Cleaner Prod.
,
176
, pp. 1316–1322.
45.
Tang
,
Y.
,
Yang
,
S.
, and
Zhao
,
Y. F.
,
2016
, “
Sustainable Design for Additive Manufacturing Through Functionality Integration and Part Consolidation
,”
Handbook of Sustainability in Additive Manufacturing
,
Springer
, Singapore, pp.
101
144
.
46.
Yang
,
S.
,
Talekar
,
T.
,
Sulthan
,
M. A.
, and
Zhao
,
Y. F.
,
2017
, “
A Generic Sustainability Assessment Model Towards Consolidated Parts Fabricated by Additive Manufacturing Process
,”
Procedia Manuf.
,
10
, pp.
831
844
.
47.
Wilson
,
J. M.
,
Piya
,
C.
,
Shin
,
Y. C.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2014
, “
Remanufacturing of Turbine Blades by Laser Direct Deposition With Its Energy and Environmental Impact Analysis
,”
J. Cleaner Prod.
,
80
, pp.
170
178
.
48.
Seepersad
,
C. C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Mistree
,
F.
,
2008
, “
Multifunctional Topology Design of Cellular Material Structures
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031404
.
49.
Panesar
,
A.
,
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2015
, “
Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111414
.
50.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
51.
Moroni
,
G.
,
Syam
,
W. P.
, and
Petrò
,
S.
,
2015
, “
Functionality-Based Part Orientation for Additive Manufacturing
,”
Procedia CIRP 36
, Haifa, Israel, Mar. 2–4, pp.
217
222
.https://www.researchgate.net/publication/271992651_Functionality-based_Part_Orientation_for_Additive_Manufacturing
52.
Ion
,
A.
,
Frohnhofen
,
J.
,
Wall
,
L.
,
Kovacs
,
R.
,
Alistar
,
M.
,
Lindsay
,
J.
,
Lopes
,
P.
,
Chen
,
H.
, and
Baudisch
,
P.
,
2016
, “
Metamaterial Mechanisms
,” 29th ACM Symposium on User Interface Software and Technology (
UIST
), Tokyo, Japan, Oct. 16–19, pp.
529
539
.https://dl.acm.org/citation.cfm?id=2984511
53.
Lopes
,
A. J.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2012
, “
Integrating Stereolithography and Direct Print Technologies for 3D Structural Electronics Fabrication
,”
Rapid Prototyping J.
,
18
(
2
), pp.
129
143
.
54.
Junk
,
S.
, and
Tränkle
,
M.
,
2011
, “
Design for Additive Manufacturing Technologies: New Applications of 3D Printing for Rapid Prototype and Rapid Tooling
,” 18th International Conference on Engineering Design (
ICED 11
), Lyngby/Copenhagen, Denmark, Aug. 15–19, pp. 12–18.https://www.designsociety.org/publication/30574/design_for_additive_manufacturing_technologies_new_applications_of_3d-printing_for_rapid_prototyping_and_rapid_tooling
55.
Sabourin
,
E.
,
Houser
,
S. A.
, and
Helge Bøhn
,
J.
,
1996
, “
Adaptive Slicing Using Stepwise Uniform Refinement
,”
Rapid Prototyping J.
,
2
(
4
), pp.
20
26
.
56.
Ford
,
S.
, and
Despeisse
,
M.
,
2016
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Cleaner Prod.
,
137
, pp.
1573
1587
.
57.
Gershenson
,
J.
,
Prasad
,
G.
, and
Zhang
,
Y.
,
2003
, “
Product Modularity: Definitions and Benefits
,”
J. Eng. Des.
,
14
(
3
), pp.
295
313
.
58.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
59.
Sosale
,
S.
,
Hashemian
,
M.
, and
Gu
,
P.
,
1997
, “
Product Modularization for Reuse and Recycling
,”
ASME Des. Eng. Div.
,
94
, pp. 195–206.http://www.citeulike.org/user/whutabarat/article/6428047
60.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
.
61.
Oregon State University
,
2006
, “
Design Repository
,” Oregon State University, Corvallis, OR, accessed May 10, 2017, https://design.engr.oregonstate.edu/repo
62.
Bin Maidin
,
S.
,
2011
, “
Development of a Design Feature Database to Support Design for Additive Manufacturing (DfAM)
,”
Ph.D. dissertation
, Loughborough University, Loughborough, UK.https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/9111
63.
Stanković
,
T.
,
Mueller
,
J.
,
Egan
,
P.
, and
Shea
,
K.
,
2015
, “
A Generalized Optimality Criteria Method for Optimization of Additively Manufactured Multimaterial Lattice Structures
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111405
.
64.
Shimomura
,
Y.
,
Yoshioka
,
M.
,
Takeda
,
H.
,
Umeda
,
Y.
, and
Tomiyama
,
T.
,
1998
, “
Representation of Design Object Based on the Functional Evolution Process Model
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
221
229
.
65.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyping J.
,
23
(
1
), pp. 181–189.http://www.emeraldinsight.com/doi/abs/10.1108/RPJ-12-2015-0183
66.
Autodesk
,
2016
, “
Project Dreamcatcher
,” AutoDesk Ltd., Toronto, ON, Canada, accessed May 10, 2017, https://autodeskresearch.com/projects/dreamcatcher
You do not currently have access to this content.