This paper presents a method for automated manufacturing process selection during conceptual design. It is helpful to know which manufacturing processes can produce a design at an early stage, when the overall design can be changed for less cost. Early during new product development, geometric dimensions and tolerances may not yet be specified, but a general three-dimensional (3D) model is often under development. In this work, algorithms are presented to interrogate 3D models to calculate machining-based manufacturability metrics. These algorithms are used on a dataset of 86 computer-aided design (CAD) models classified as machined or cast-then-machined. The metrics, such as visibility, reachability, and setup orientations, seek to characterize a part's manufacturability using machining domain knowledge. These metrics serve as inputs to machine learning models, which are used to classify parts by manufacturing process with 86% accuracy. Some of the incorrectly classified parts were instances that had robust designs capable of being manufactured using machining or casting. The results of the machine learning models indicate that the machining metrics can be used to provide process selection feedback during conceptual design.

References

References
1.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Comp. Aided Des.
,
26
(
7
), pp.
505
520
.
2.
Lovatt
,
A.
, and
Shercliff
,
H.
,
1998
, “
Manufacturing Process Selection in Engineering Design—Part 1: The Role of Process Selection
,”
Mater. Des.
,
19
(
5–6
), pp.
205
215
.
3.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London
.
4.
Corbett
,
J.
, and
Crookall
,
P. R.
,
1986
, “
Design for Economic Manufacture
,”
CIRP Ann. Manuf. Technol.
,
35
(
1
), pp.
93
97
.
5.
Wetzel
,
S.
,
2014
, “
When to Cast, When to Machine
,”
Met. Casting Des. Purchasing
,
Sept./Oct
., pp. 29–32.http://www.afsinc.org/multimedia/contentMC.cfm?ItemNumber=17364
6.
Ip
,
C.
, and
Regli
,
W.
,
2006
, “
A 3D Object Classifier for Discriminating Manufacturing Processes
,”
Comput. Graph. (Pergamon)
,
30
(
6
), pp.
903
916
.
7.
Swift
,
K.
, and
Booker
,
J.
,
2013
,
Manufacturing Process Selection Handbook
,
Elsevier
,
Waltham, MA
.
8.
Gupta
,
S.
,
Regli
,
W.
,
Das
,
D.
, and
Nau
,
D.
,
1997
, “
Automated Manufacturability Analysis: A Survey
,”
Res. Eng. Des.
,
9
(
3
), pp.
168
190
.
9.
Esawi
,
A.
, and
Ashby
,
M.
,
2000
, “
The Development and Use of a Software Tool for Selecting Manufacturing Processes at the Early Stages of Design
,”
J. Integr. Des. Process Sci.
,
4
(
2
), pp.
27
43
.https://content.iospress.com/articles/journal-of-integrated-design-and-process-science/jid4-2-03
10.
Hummel
,
K.
,
1989
, “Coupling Rule-Based and Object-Oriented Programming for the Classification of Machined Features,”
ASME
Computers in Engineering Conference, Anaheim, CA, Aug. 2, pp.
409
418
.https://www.osti.gov/scitech/biblio/5654389
11.
Nau
,
D.
,
1987
, “
Automated Process Planning Using Hierarchical Abstraction
,”
Texas Inst. Tech. J., Winter
, 1, pp.
39
46
.http://www.cs.umd.edu/~nau/papers/nau1987automated.pdf
12.
Giachetti
,
R.
,
1998
, “
A Decision Support System for Material and Manufacturing Process Selection
,”
J. Intell. Manuf.
,
9
(
3
), pp.
265
276
.
13.
Yurdakul
,
M.
,
Arslan
,
E.
,
Ic
,
Y.
, and
Tuerkbas
,
O.
,
2014
, “
A Decision Support System for Selection of Net-Shape Primary Manufacturing Process
,”
Int. J. Prod. Res.
,
52
(
5
), pp.
1528
1541
.
14.
Zha
,
X.
,
2005
, “
A Web-Based Advisory System for Process and Material Selection in Concurrent Product Design for a Manufacturing Environment
,”
Int. J. Adv. Manuf. Technol.
,
25
(
3–4
), pp.
233
243
.
15.
Giess
,
M.
,
McMahon
,
C.
,
Booker
,
J.
, and
Stewart
,
D.
,
2009
, “
Application of Faceted Classification in the Support of Manufacturing Process Selection
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
223
(
6
), pp.
597
608
.
16.
Smith
,
C.
,
Wright
,
P.
, and
Séquin
,
C.
,
2003
, “
The Manufacturing Advisory Service: Web-Based Process and Material Selection
,”
Int. J. Comput. Integr. Manuf.
,
16
(
6
), pp.
373
381
.
17.
Djassemi
,
M.
,
2009
, “
A Computer-Based Economic Analysis for Manufacturing Process Selection
,”
Int. J. Agile Manuf.
,
11
(
1
), pp.
11
18
.http://ijme.us/cd_08/PDF/107%20IT%20302.pdf
18.
Esawi
,
A.
, and
Ashby
,
M.
,
2003
, “
Cost Estimates to Guide Pre-Selection of Processes
,”
Mater. Des.
,
24
(
8
), pp.
605
616
.
19.
Lee
,
C.
,
1992
, “
A Knowledge-Based Systems Approach for Manufacturing Process Selection in Design
,”
Ph.D. dissertation
, Ohio State University, Columbus, OH.https://dl.acm.org/citation.cfm?id=143071
20.
Allen
,
A.
, and
Swift
,
K.
,
1990
, “
Manufacturing Process Selection and Costing
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
204
(
143
), pp.
143
148
.
21.
Loyer
,
J.
,
Henriques
,
E.
,
Fontul
,
M.
, and
Wiseall
,
S.
,
2016
, “
Comparison of Machine Learning Methods Applied to the Estimation of Manufacturing Cost of Jet Engine Components
,”
Int. J. Prod. Econ.
,
178
, pp.
109
119
.
22.
Lovatt
,
A.
, and
Shercliff
,
H.
,
1998
, “
Manufacturing Process Selection in Engineering Design—Part 2: A Methodology for Creating Task-Based Process Selection Procedures
,”
Mater. Des.
,
19
(
5–6
), pp.
217
230
.
23.
Lovatt
,
A.
,
Bassetti
,
D.
,
Shercliff
,
H.
, and
Bréchet
,
Y.
,
2000
, “
Process and Alloy Selection for Aluminium Casting
,”
Int. J. Cast Met. Res.
,
12
(
4
), pp.
211
225
.
24.
Thompson
,
M.
,
Stolfi
,
A.
, and
Mischkot
,
M.
,
2016
, “
Process Chain Modeling and Selection in an Additive Manufacturing Context
,”
CIRP J. Manuf. Sci. Technol.
,
12
, pp.
25
34
.
25.
Musti
,
S.
,
1988
, “
"Automated Group Technology Part Coding From a Three-Dimensional CAD Database
,”
ASME J. Eng. Ind.
,
110
(
3
), pp.
278
287
.
26.
Zehtaban
,
L.
,
Elazhary
,
O.
, and
Roller
,
D.
,
2016
, “
A Framework for Similarity Recognition of CAD Models
,”
J. Comput. Des. Eng.
,
3
(
3
), pp.
274
285
.
27.
Biasotti
,
S.
,
Cerri
,
A.
,
Bronstein
,
A.
, and
Bronstein
,
M.
,
2016
, “
Recent Trends, Applications, and Perspectives in 3D Shape Similarity Assessment
,”
Comput. Graph. Forum
,
35
(
6
), pp.
87
119
.
28.
Iyer
,
N.
,
Jayanti
,
S.
,
Lou
,
K.
,
Kalyanaraman
,
Y.
, and
Ramani
,
K.
,
2005
, “
Three-Dimensional Shape Searching: State-of-the-Art Review and Future Trends
,”
Comput. Aided Des.
,
37
(
5
), pp.
509
530
.
29.
Chen
,
X.
,
Gao
,
S.
,
Guo
,
S.
, and
Bai
,
J.
,
2012
, “
A Flexible Assembly Retrieval Approach for Model Reuse
,”
Comput. Aided Des.
,
44
(
6
), pp.
554
574
.
30.
Deshmukh
,
A.
,
Banerjee
,
A.
,
Gupta
,
S.
, and
Sriram
,
R.
,
2008
, “
Content-Based Assembly Search: A Step Towards Assembly Reuse
,”
Comput. Aided Des.
,
40
(
2
), pp.
244
261
.
31.
Deshmukh
,
A.
,
Gupta
,
S.
,
Karnik
,
M.
, and
Sriram
,
R.
,
2005
, “
A System for Performing Content-Based Searches on a Database of Mechanical Assemblies
,”
Des. Eng., Parts A and B
,
2005
, pp.
411
423
.
32.
Liu
,
Z.
,
Bu
,
S.
,
Zhou
,
K.
,
Gao
,
S.
,
Han
,
J.
, and
Wu
,
J.
,
2013
, “
A Survey on Partial Retrieval of 3D Shapes
,”
J. Comput. Sci. Technol.
,
28
(
5
), pp.
836
851
.
33.
Bai
,
J.
,
Luo
,
H.
, and
Qin
,
F.
,
2016
, “
Design Pattern Modeling and Extraction for CAD Models
,”
Adv. Eng. Software
,
93
, pp.
30
43
.
34.
Kim
,
D.
,
Yun
,
I. D.
, and
Uk Lee
,
S.
,
2004
, “
Interactive 3-D Shape Retrieval System Using the Attributed Relational Graph
,”
IEEE Conference on Computer Vision and Pattern Recognition Workshop
(
CVPRW
), Washington, DC, June 27–July 2, p.
147
.
35.
Gao
,
W.
,
Gao
,
S.
,
Liu
,
Y.
,
Bai
,
J.
, and
Hu
,
B.
,
2006
, “
Multiresolutional Similarity Assessment and Retrieval of Solid Models Based on DBMS
,”
Comput. Aided Des.
,
38
(
9
), pp.
985
1001
.
36.
Pu
,
J.
,
Kalyanaraman
,
Y.
,
Jayanti
,
S.
,
Ramani
,
K.
, and
Pizlo
,
Z.
,
2007
, “
Navigation and Discovery in 3D CAD Repositories
,”
IEEE Comput. Graph. Appl.
,
27
(
4
), pp.
38
47
.
37.
Qin
,
F.
,
2014
, “
A Deep Learning Approach to the Classification of 3D CAD Models
,”
J. Zhejiang Univ. Sci. C: Comput. Electron.
,
15
(
2
), pp.
91
106
.
38.
Chakraborty
,
T.
,
2005
, “
Shape-Based Clustering of Enterprise CAD Databases
,”
Comput. Aided Des. Appl.
,
2
(
1–4
), pp.
145
154
.
39.
Jayanti
,
S.
,
Kalyanaraman
,
Y.
, and
Ramani
,
K.
,
2009
, “
Shape-Based Clustering for 3D CAD Objects: A Comparative Study of Effectiveness
,”
Comput. Aided Des.
,
41
(
12
), pp.
999
1007
.
40.
Bespalov
,
D.
,
Ip
,
C.
,
Regli
,
W.
, and
Shaffer
,
J.
,
2005
, “
Benchmarking CAD Search Techniques
,”
ACM Symposium on Solid and Physical Modeling
(
SPM
), Cambridge, MA, June 13–15, pp.
275
286
.
41.
Peabody
,
M.
, and
Regli
,
W.
,
2001
, “Clustering Techniques for Databases of CAD Models,” Drexel University, Philadelphia, PA, Technical Report No.
DU-MCS-01-01
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.6812&rep=rep1&type=pdf
42.
Bespalov
,
D.
,
Shokoufandeh
,
A.
,
Regli
,
W.
, and
Sun
,
W.
,
2003
, “
Scale-Space Representation of 3D Models and Topological Matching
,”
Eighth ACM Symposium on Solid Modeling and Applications
, pp.
208
215
.
43.
Al-Mubaid
,
H.
,
Abouel Nasr
,
E.
, and
Kamrani
,
A.
,
2008
, “
Using Data Mining in the Manufacturing Systems for CAD Model Analysis and Classification
,”
Int. J. Agile Syst. Manage.
,
3
(
1/2
), pp.
147
162
.
44.
Regli
,
W. C.
,
Foster
,
C.
,
Hayes
,
E
.,
Ip
,
C. Y.
,
McWherter
,
D.
,
Peabody
,
M.
,
Shapirsteyn
,
Y.
, and
Zaychik
,
V.
,
2001
, “
National Design Repository Project: A Status Report
,” International Joint Conferences on Artificial Intelligence (
IJCAI
), Seattle, WA, Aug. 4–10https://pdfs.semanticscholar.org/11ef/a802666520bb6a276bdd977c7d2bd2170c9c.pdf.
45.
Hoefer
,
M.
,
Chen
,
N.
, and
Frank
,
M.
,
2017
, “
Automated Manufacturability Analysis for Conceptual Design in New Product Development
,”
Industrial and Systems Engineering Research Conference
(ISERC), Pittsburgh, PA, May 20–23, pp.
860
865
.
46.
Frank
,
M.
,
Wysk
,
R.
, and
Joshi
,
S.
,
2006
, “
Determining Setup Orientations From the Visibility of Slice Geometry for Rapid Computer Numerically Controlled Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
228
238
.
47.
Arabia
,
S.
,
2008
, “
The Relationship Between Tool Length/Diameter Radio and Surface Roughness in End Milling Applications
,”
International Congress on Sound and Vibration
(
ICSV
), Daejeon, Korea, July 6–10, pp.
1382
1389
.http://studylib.net/doc/18185967/the-relationship-between-tool-length-diameter-ratio
48.
Chay
,
J.
,
Jackman
,
J.
,
Frank
,
M.
, and
Peters
,
F.
,
2017
, “
A New Metric for Evaluating Machinability of a Design
,”
Industrial and Systems Engineering Research Conference
(ISERC), Pittsburgh, PA, May 20–23, pp.
1840
1845
.
49.
Li
,
Y.
, and
Frank
,
M.
,
2006
, “
Machinability Analysis for 3-Axis Flat End Milling
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
454
464
.
50.
Hoefer
,
M.
,
Frank
,
M.
, and
Dorneich
,
M.
,
2017
, “
Geometric Analysis to Automate Design for Supply Chain
,”
Industrial and Systems Engineering Research Conference
(
ISERC
), Pittsburgh, PA, May 20–23, pp.
866
871
.https://www.researchgate.net/profile/Michael_Hoefer4/publication/318783066_Geometric_Analysis_to_Automate_Design_for_Supply_Chain/links/597e7ecf0f7e9b8802eaf13b/Geometric-Analysis-to-Automate-Design-for-Supply-Chain.pdf
51.
Venables
,
W.
, and
Ripley
,
B.
,
2002
,
Modern Applied Statistics With S
,
4th ed.
,
Springer
,
New York
.
52.
Therneau
,
T.
,
Atkinson
,
B.
, and
Ripley
,
B.
,
2015
, “RPART: Recursive Partitioning and Regression Trees,” R package version 4.1-10, https://CRAN.R-project.org/package=rpart
53.
Liaw
,
A.
, and
Wiener
,
M.
,
2002
, “
Classification and Regression by randomForest
,”
R News
,
2
(
3
), pp.
18
22
.http://www.bios.unc.edu/~dzeng/BIOS740/randomforest.pdf
54.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
You do not currently have access to this content.