A reliability-based topology optimization (RBTO) approach is presented using a new mean-value second-order saddlepoint approximation (MVSOSA) method to calculate the probability of failure. The topology optimizer uses a discrete adjoint formulation. MVSOSA is based on a second-order Taylor expansion of the limit state function at the mean values of the random variables. The first- and second-order sensitivity derivatives of the limit state cumulant generating function (CGF), with respect to the random variables in MVSOSA, are computed using direct-differentiation of the structural equations. Third-order sensitivity derivatives, including the sensitivities of the saddlepoint, are calculated using the adjoint approach. The accuracy of the proposed MVSOSA reliability method is demonstrated using a nonlinear mathematical example. Comparison with Monte Carlo simulation (MCS) shows that MVSOSA is more accurate than mean-value first-order saddlepoint approximation (MVFOSA) and more accurate than mean-value second-order second-moment (MVSOSM) method. Finally, the proposed RBTO-MVSOSA method for minimizing a compliance-based probability of failure is demonstrated using two two-dimensional beam structures under random loading. The density-based topology optimization based on the solid isotropic material with penalization (SIMP) method is utilized.

References

References
1.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer-Verlag
,
Berlin
.
2.
Jung
,
H. S.
, and
Cho
,
S.
,
2004
, “
Reliability-Based Topology Optimization of Geometrically Nonlinear Structures With Loading and Material Uncertainties
,”
Finite Elem. Anal. Des.
,
41
(
3
), pp.
311
331
.
3.
Chen
,
S.
,
Chen
,
W.
, and
Lee
,
S.
,
2010
, “
Level Set Based Robust Shape and Topology Optimization Under Random Field Uncertainties
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
507
524
.
4.
Asadpoure
,
A.
,
Tootkaboni
,
M.
, and
Guest
,
J. K.
,
2011
, “
Robust Topology Optimization of Structures With Uncertainties in Stiffness—Application to Truss Structures
,”
Comput. Struct.
,
89
(
11
), pp.
1131
1141
.
5.
Sigmund
,
O.
,
2009
, “
Manufacturing Tolerant Topology Optimization
,”
Acta Mech. Sin.
,
25
(
2
), pp.
227
239
.
6.
Schevenels
,
M.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Robust Topology Optimization Accounting for Spatially Varying Manufacturing Errors
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
49
), pp.
3613
3627
.
7.
Dunning
,
P. D.
,
Kim
,
H. A.
, and
Mullineux
,
G.
,
2011
, “
Introducing Loading Uncertainty in Topology Optimization
,”
AIAA J.
,
49
(
4
), pp.
760
768
.
8.
Zhao
,
J.
, and
Wang
,
C.
,
2014
, “
Robust Topology Optimization of Structures Under Loading Uncertainty
,”
AIAA J.
,
52
(
2
), pp.
398
407
.
9.
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2013
, “
Robust Topology Optimization: Minimization of Expected and Variance of Compliance
,”
AIAA J.
,
51
(
11
), pp.
2656
2664
.
10.
Guest
,
J. K.
, and
Igusa
,
T.
,
2008
, “
Structural Optimization Under Uncertain Loads and Nodal Locations
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
116
124
.
11.
Tootkaboni
,
M.
,
Asadpoure
,
A.
, and
Guest
,
J. K.
,
2012
, “
Topology Optimization of Continuum Structures Under Uncertainty—A Polynomial Chaos Approach
,”
Comput. Methods Appl. Mech. Eng.
,
201–204
, pp.
263
275
.
12.
Papadimitriou
,
D. I.
, and
Papadimitriou
,
C.
,
2016
, “
Robust and Reliability-Based Structural Topology Optimization Using a Continuous Adjoint Method
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A
,
2
(
3
), p.
B4016002
.
13.
Jansen
,
M.
,
Lombaert
,
G.
,
Diehl
,
M.
,
Lazarov
,
B. S.
,
Sigmund
,
O.
, and
Schevenels
,
M.
,
2013
, “
Robust Topology Optimization Accounting for Misplacement of Material
,”
Struct. Multidiscip. Optim.
,
47
(
3
), pp.
317
333
.
14.
Mogami
,
K.
,
Nishiwaki
,
S.
,
Izui
,
K.
,
Yoshimura
,
M.
, and
Kogiso
,
N.
,
2006
, “
Reliability-Based Structural Optimization of Frame Structures for Multiple Failure Criteria Using Topology Optimization Techniques
,”
Struct. Multidiscip. Optim.
,
32
(
4
), pp.
299
311
.
15.
Jalalpour
,
M.
,
Guest
,
J. K.
, and
Igusa
,
T.
,
2013
, “
Reliability-Based Topology Optimization of Trusses With Stochastic Stiffness
,”
Struct. Saf.
,
43
, pp.
41
49
.
16.
Maute
,
K.
, and
Frangopol
,
D. M.
,
2003
, “
Reliability-Based Design of MEMS Mechanisms by Topology Optimization
,”
Comput. Struct.
,
81
(
8
), pp.
813
824
.
17.
Kharmanda
,
G.
,
Olhoff
,
N.
,
Mohamed
,
A.
, and
Lemaire
,
M.
,
2004
, “
Reliability-Based Topology Optimization
,”
Struct. Multidiscip. Optim.
,
26
(
5
), pp.
295
307
.
18.
Silva
,
M.
,
Tortorelli
,
D. A.
,
Norato
,
J. A.
,
Ha
,
C.
, and
Bae
,
H.-R.
,
2010
, “
Component and System Reliability-Based Topology Optimization Using a Single-Loop Method
,”
Struct. Multidiscip. Optim.
,
41
(
1
), pp.
87
106
.
19.
Nguyen
,
T. H.
,
Song
,
J.
, and
Paulino
,
G. H.
,
2011
, “
Single-Loop System Reliability-Based Topology Optimization Considering Statistical Dependence Between Limit-States
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
593
611
.
20.
Der Kiureghian
,
A.
,
2005
, “
First and Second-Order Reliability Methods
,”
Engineering Design Reliability Handbook
,
E.
Nikolaidis
,
D. M.
Ghiocel
, and
S.
Singhal
, eds.,
CRC Press
,
Boca Raton, FL
, Chap. 14.
21.
Daniels
,
H. E.
,
1954
, “
Saddlepoint Approximations in Statistics
,”
Ann. Math. Stat.
,
25
(
4
), pp.
631
650
.
22.
Goutis
,
C.
, and
Casella
,
G.
,
1999
, “
Explaining the Saddlepoint Approximation
,”
Am. Stat.
,
53
(
3
), pp.
216
224
.
23.
Du
,
X.
, and
Sudjianto
,
A.
,
2004
, “
First-Order Saddlepoint Approximation for Reliability Analysis
,”
AIAA J.
,
42
(
6
), pp.
1199
1207
.
24.
Huang
,
B.
, and
Du
,
X.
,
2008
, “
Probabilistic Uncertainty Analysis by Mean-Value First-Order Saddlepoint Approximation
,”
Reliab. Eng. Syst. Saf.
,
93
(
2
), pp.
325
336
.
25.
Sudjianto
,
A.
,
Du
,
X.
, and
Chen
,
W.
,
2005
, “
Probabilistic Sensitivity Analysis in Engineering Design Using Uniform Sampling and Saddlepoint Approximation
,”
SAE
Paper No. 2005-01-0344.
26.
Du
,
X.
,
2010
, “
System Reliability Analysis With Saddlepoint Approximation
,”
Struct. Multidiscip. Optim.
,
42
(
2
), pp.
193
208
.
27.
Guo
,
S.
,
2014
, “
An Efficient Third-Moment Saddlepoint Approximation for Probabilistic Uncertainty Analysis and Reliability Evaluation of Structures
,”
Appl. Math. Modell.
,
38
(
1
), pp.
221
232
.
28.
Yuen
,
K. V.
,
Wang
,
J.
, and
Au
,
S. K.
,
2007
, “
Application of Saddlepoint Approximation in Reliability Analysis of Dynamic Systems
,”
Earthquake Eng. Eng. Vib.
,
6
(
4
), pp.
391
400
.
29.
Meng
,
D.
,
Huang
,
H. Z.
,
Wang
,
Z.
,
Xiao
,
N. C.
, and
Zhang
,
X. L.
,
2014
, “
Mean-Value First-Order Saddlepoint Approximation Based Collaborative Optimization for Multidisciplinary Problems Under Aleatory Uncertainty
,”
J. Mech. Sci. Technol.
,
28
(
10
), pp.
3925
3935
.
30.
Lugannani
,
R.
, and
Rice
,
S.
,
1980
, “
Saddle Point Approximation for the Distribution of the Sum of Independent Random Variables
,”
Adv. Appl. Probab.
,
12
(
2
), pp.
475
490
.
31.
Giles
,
M. B.
, and
Pierce
,
N. A.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust.
,
65
(
3–4
), pp.
393
415
.
32.
Mathai
,
A. M.
, and
Provost
,
S. B.
,
1992
,
Quadratic Forms in Random Variables, Theory and Applications
,
Marcel Dekker
,
New York
.
33.
Redner
,
R. A.
, and
Walker
,
H. F.
,
1984
, “
Mixture Densities, Maximum Likelihood and the EM Algorithm
,”
SIAM Rev.
,
26
(
2
), pp.
195
239
.
34.
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
,
2013
, “
Third-Order Sensitivity Analysis for Robust Aerodynamic Design Using Continuous Adjoint
,”
Int. J. Numer. Methods Fluids
,
71
(
5
), pp.
652
670
.
35.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
36.
Zervogiannis
,
T.
,
Papadimitriou
,
D. I.
, and
Giannakoglou
,
K. C.
,
2010
, “
Total Pressure Losses Minimization in Turbomachinery Cascades Using the Exact Hessian
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
41
), pp.
2697
2708
.
You do not currently have access to this content.