This paper proposes an optimum design method for a two-dimensional microchannel heat sink under a laminar flow assumption that simultaneously provides maximal heat exchange and minimal pressure drop, based on a topology optimization method incorporating Pareto front exploration. First, the formulation of governing equations for the coupled thermal-fluid problem and a level set-based topology optimization method are briefly discussed. Next, an optimum design problem for a microchannel heat sink is formulated as a bi-objective optimization problem. An algorithm for Pareto front exploration is then constructed, based on a scheme that adaptively determines weighting coefficients by solving a linear programming problem. Finally, in the numerical example, the proposed method yields a Pareto front approximation and enables the analysis of the trade-off relationship between heat exchange and pressure drop, confirming the utility of the proposed method.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
2.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
3.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
4.
Mahalingam
,
R.
, and
Glezer
,
A.
,
2005
, “
Design and Thermal Characteristics of a Synthetic Jet Ejector Heat Sink
,”
ASME J. Electron. Packag.
,
127
(
2
), pp.
172
177
.
5.
Maveety
,
J.
, and
Jung
,
H.
,
2000
, “
Design of an Optimal Pin-Fin Heat Sink With Air Impingement Cooling
,”
Int. Commun. Heat Mass Transfer
,
27
(
2
), pp.
229
240
.
6.
Yu
,
S.-H.
,
Lee
,
K.-S.
, and
Yook
,
S.-J.
,
2011
, “
Optimum Design of a Radial Heat Sink Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
54
(
11
), pp.
2499
2505
.
7.
Herrmann-Priesnitz
,
B.
,
Calderón-Muñoz
,
W. R.
,
Valencia
,
A.
, and
Soto
,
R.
,
2016
, “
Thermal Design Exploration of a Swirl Flow Microchannel Heat Sink for High Heat Flux Applications Based on Numerical Simulations
,”
Appl. Therm. Eng.
,
109
(Pt. A), pp.
22
34
.
8.
Kim
,
S. J.
,
2004
, “
Methods for Thermal Optimization of Microchannel Heat Sinks
,”
Heat Transfer Eng.
,
25
(
1
), pp.
37
49
.
9.
Bello-Ochende
,
T.
,
Meyer
,
J.
, and
Ighalo
,
F.
,
2010
, “
Combined Numerical Optimization and Constructal Theory for the Design of Microchannel Heat Sinks
,”
Numer. Heat Transfer Part A: Appl.
,
58
(
11
), pp.
882
899
.
10.
Hung
,
T.-C.
,
Yan
,
W.-M.
,
Wang
,
X.-D.
, and
Huang
,
Y.-X.
,
2012
, “
Optimal Design of Geometric Parameters of Double-Layered Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
55
(
11
), pp.
3262
3272
.
11.
Prager
,
W.
,
1974
, “
A Note on Discretized Michell Structures
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
3
), pp.
349
355
.
12.
Svanberg
,
K.
,
1981
, “
Optimization of Geometry in Truss Design
,”
Comput. Methods Appl. Mech. Eng.
,
28
(
1
), pp.
63
80
.
13.
Pironneau
,
O.
,
1984
,
Optimal Shape Design for Elliptic Systems
, Springer, Berlin.
14.
Sokolowski
,
J.
, and
Zolesio
,
J.-P.
,
1992
,
Introduction to Shape Optimization
,
Springer
,
Berlin
.
15.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
16.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization Theory, Methods, and Applications
,
Springer
,
Berlin
.
17.
Lee
,
H.-A.
, and
Park
,
G.-J.
,
2012
, “
Topology Optimization for Structures With Nonlinear Behavior Using the Equivalent Static Loads Method
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031004
.
18.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031007
.
19.
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2011
, “
A Level Set-Based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems Including Design-Dependent Effects
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031011
.
20.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.
21.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
22.
Whitaker
,
S.
,
1986
, “
Flow in Porous Media—I: A Theoretical Derivation of Darcy's Law
,”
Transp. Porous Media
,
1
(
1
), pp.
3
25
.
23.
Gersborg-Hansen
,
A.
,
Sigmund
,
O.
, and
Haber
,
R. B.
,
2005
, “
Topology Optimization of Channel Flow Problems
,”
Struct. Multidiscip. Optim.
,
30
(
3
), pp.
181
192
.
24.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
A Variational Level Set Method for the Topology Optimization of Steady-State Navier–Stokes Flow
,”
J. Comput. Phys.
,
227
(
24
), pp.
10178
10195
.
25.
Deng
,
Y.
,
Liu
,
Z.
, and
Wu
,
Y.
,
2013
, “
Topology Optimization of Steady and Unsteady Incompressible Navier–Stokes Flows Driven by Body Forces
,”
Struct. Multidiscip. Optim.
,
47
(
4
), pp.
555
570
.
26.
Zhang
,
B.
,
Liu
,
X.
, and
Sun
,
J.
,
2016
, “
Topology Optimization Design of Non-Newtonian Roller-Type Viscous Micropumps
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
409
424
.
27.
Lin
,
S.
,
Zhao
,
L.
,
Guest
,
J. K.
,
Weihs
,
T. P.
, and
Liu
,
Z.
,
2015
, “
Topology Optimization of Fixed-Geometry Fluid Diodes
,”
ASME J. Mech. Des.
,
137
(
8
), p.
081402
.
28.
Matsumori
,
T.
,
Kondoh
,
T.
,
Kawamoto
,
A.
, and
Nomura
,
T.
,
2013
, “
Topology Optimization for Fluid–Thermal Interaction Problems Under Constant Input Power
,”
Struct. Multidiscip. Optim.
,
47
(
4
), pp.
571
581
.
29.
Yaji
,
K.
,
Yamada
,
T.
,
Kubo
,
S.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2015
, “
A Topology Optimization Method for a Coupled Thermal–Fluid Problem Using Level Set Boundary Expressions
,”
Int. J. Heat Mass Transfer
,
81
, pp.
878
888
.
30.
Dede
,
E. M.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.
31.
Koga
,
A. A.
,
Lopes
,
E. C. C.
,
Nova
,
H. F. V.
,
de Lima
,
C. R.
, and
Silva
,
E. C. N.
,
2013
, “
Development of Heat Sink Device by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
64
, pp.
759
772
.
32.
Alexandersen
,
J.
,
Aage
,
N.
,
Andreasen
,
C. S.
, and
Sigmund
,
O.
,
2014
, “
Topology Optimisation for Natural Convection Problems
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
699
721
.
33.
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2016
, “
Large Scale Three-Dimensional Topology Optimisation of Heat Sinks Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
,
100
, pp.
876
891
.
34.
Łaniewski-Wołłk
,
Ł.
, and
Rokicki
,
J.
,
2016
, “
Adjoint Lattice Boltzmann for Topology Optimization on Multi-GPU Architecture
,”
Comput. Math. Appl.
,
71
(
3
), pp.
833
848
.
35.
Yaji
,
K.
,
Yamada
,
T.
,
Yoshino
,
M.
,
Matsumoto
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2016
, “
Topology Optimization in Thermal-Fluid Flow Using the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
307
, pp.
355
377
.
36.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
37.
Sullivan
,
T. A.
,
Van de Ven, J. D.
,
Northrop, W. F.
, and
McCabe, K.
,
2015
, “
Integrated Mechanical and Thermodynamic Optimization of an Engine Linkage Using a Multi-Objective Genetic Algorithm
,”
ASME J. Mech. Des.
,
137
(
2
), p.
024501
.
38.
Bhattacharjee
,
K. S.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2016
, “
Multi-Objective Optimization With Multiple Spatially Distributed Surrogates
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091401
.
39.
Koski
,
J.
,
1988
, “
Multicriteria Truss Optimization
,”
Multicriteria Optimization in Engineering and in the Sciences
,
Springer
,
New York
, pp.
263
307
.
40.
Haimes
,
Y. Y.
,
Lasdon
,
L. S.
, and
Wismer
,
D. A.
,
1971
, “
On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization
,”
IEEE Trans. Syst. Man Cybern.
,
1
(
3
), pp.
296
297
.
41.
Das
,
I.
, and
Dennis
,
J. E.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.
42.
Messac
,
A.
,
Ismail-Yahaya
,
A.
, and
Mattson
,
C. A.
,
2003
, “
The Normalized Normal Constraint Method for Generating the Pareto Frontier
,”
Struct. Multidiscip. Optim.
,
25
(
2
), pp.
86
98
.
43.
Shin
,
W. S.
, and
Ravindran
,
A.
,
1991
, “
Interactive Multiple Objective Optimization—Survey I: Continuous Case
,”
Comput. Oper. Res.
,
18
(
1
), pp.
97
114
.
44.
Nakayama
,
H.
,
1992
, “
Trade-Off Analysis Using Parametric Optimization Techniques
,”
Eur. J. Oper. Res.
,
60
(
1
), pp.
87
98
.
45.
Chen
,
Y.
,
Zhou
,
S.
, and
Li
,
Q.
,
2010
, “
Multiobjective Topology Optimization for Finite Periodic Structures
,”
Comput. Struct.
,
88
(
11
), pp.
806
811
.
46.
Mitchell
,
S. L.
, and
Ortiz
,
M.
,
2016
, “
Computational Multiobjective Topology Optimization of Silicon Anode Structures for Lithium-Ion Batteries
,”
J. Power Sources
,
326
, pp.
242
251
.
47.
Lee
,
J.
,
Seo
,
J. H.
, and
Kikuchi
,
N.
,
2010
, “
Topology Optimization of Switched Reluctance Motors for the Desired Torque Profile
,”
Struct. Multidiscip. Optim.
,
42
(
5
), pp.
783
796
.
48.
Izui
,
K.
,
Yamada
,
T.
,
Nishiwaki
,
S.
, and
Tanaka
,
K.
,
2015
, “
Multiobjective Optimization Using an Aggregative Gradient-Based Method
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
173
182
.
49.
Sato
,
Y.
,
Izui
,
K.
,
Yamada
,
T.
, and
Nishiwaki
,
S.
,
2016
, “
Gradient-Based Multiobjective Optimization Using a Distance Constraint Technique and Point Replacement
,”
Eng. Optim.
,
48
(
7
), pp.
1226
1250
.
50.
Sato
,
Y.
,
Izui
,
K.
,
Yamada
,
T.
, and
Nishiwaki
,
S.
,
2017
, “
Pareto Frontier Exploration in Multiobjective Topology Optimization Using Adaptive Weighting and Point Selection Schemes
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
409
422
.
51.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45
), pp.
2876
2891
.
52.
Koski
,
J.
,
1985
, “
Defectiveness of Weighting Method in Multicriterion Optimization of Structures
,”
Int. J. Numer. Methods Biomed. Eng.
,
1
(
6
), pp.
333
337
.
53.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
, Vol.
16
,
Wiley
,
Chichester, UK
.
54.
Zitzler
,
E.
, and
Thiele
,
L.
,
1998
, “
Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study
,”
International Conference on Parallel Problem Solving From Nature
(
PPSN
), Edinburgh, UK, Sept. 17–21, pp.
292
301
.
55.
Auger
,
A.
,
Bader
,
J.
,
Brockhoff
,
D.
, and
Zitzler
,
E.
,
2009
, “
Theory of the Hypervolume Indicator: Optimal μ-Distributions and the Choice of the Reference Point
,”
Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms
, Orlando, FL, Jan. 9–11, pp.
87
102
.
You do not currently have access to this content.