The application of a Gleason Coniflex cutter (plane-cutter) to a modern Phoenix bevel gear machine tool in face gear manufacturing has an advantage of involving a universal cutter or grinder and an available existing machine. It is valuable to research this method for face gear manufacturing. First, the principle of the application of the plane-cutter in face gear manufacturing is presented. Then, the geometry of the cutter is defined, and the model of the face gear generated by this method in abstract is established. Third, a method that uses a predesigned contact path for the synthesis with the motion parameters of the plane-cutter is proposed; controllable transmission errors are considered in this process. Fourth, based on the equivalence principle of the position and direction, the computer numerical control (CNC) motion rules of all spindles of the machine are determined, and the surface generated by the machine is presented. Finally, numerical simulation of an example demonstrates that although the surface generated by the plane-cutter, to a certain extent, deviates from the theoretical surface generated by the traditional method, the surface, in meshing with the standard involute surface of the pinion, presents a good geometric meshing performance based on tooth contact analysis (TCA), except for a shortened contact ellipse.

References

References
1.
Litvin
,
F. L.
,
Wang
,
J. C.
,
Bossler
,
R. B.
, Jr.
,
Chen
,
Y. J. D.
,
Heath
,
G.
, and
Lewicki
,
D. G.
,
1992
, “
Application of Face Gear Drives in Helicopter Transmissions
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
AVSCOM 91-C-036
.https://ntrs.nasa.gov/search.jsp?R=19920019191
2.
Heath
,
G. F.
,
Filler
,
R. R.
, and
Tan
,
J.
,
2002
, “
Development of Face Gear Technology for Industrial and Aerospace Power Transmission
,” The Boeing Company, Mesa, AZ, Technical Report No.
ARL-CR-0485
.https://ntrs.nasa.gov/search.jsp?R=20020062003
3.
Litvin
,
F. L.
,
Egelja
,
A.
,
Tan
,
J.
,
Chen
,
D. Y. D.
, and
Heath
,
G.
,
2000
, “
Handbook on Face Gear Drives With a Spur Involute Pinion
,” University of Illinois at Chicago, Chicago, IL, Technical Report No.
ARL-CR-447
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000027536.pdf
4.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
2nd ed.
,
Cambridge University Press
,
New York
, Chap. 18.
5.
Li
,
Z. M. Q.
, and
Zhu
,
R. P.
,
2007
, “
Process Method of Face-Gear Drive With Spur Involute Pinion With the Shaping Machine
,”
J. Chongqing Univ.
,
30
(
7
), pp.
55
58
(in Chinese).
6.
Dundas
,
K. B.
,
Milton
,
D. F.
,
Hill
,
A. R. R.
, and
Willowdale
,
G. F.
,
2002
, “
Face Gear Manufacturing Method and Apparatus
,” U.S. Patent No.
US6390894 B1
.https://www.google.ch/patents/US6390894
7.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Zanzi
,
C.
,
Pontiggia
,
M.
, and
Handschuh
,
R. F.
,
2002
, “
Face Gear Drive With Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
25–26
), pp.
2785
2813
.
8.
Wu
,
Y. N.
,
2013
, “
Research on Hobbing Method of Face Gear
,” Master's thesis, Harbin Institute of Technology, Harbin, China (in Chinese).
9.
Peng
,
X. L.
,
Fang
,
Z. D.
,
Su
,
J. Z.
, and
Pei
,
S. S.
,
2012
, “
Theory Analysis for Application Grinding Disk in Face Gear Grinding
,”
J. Aerosp. Power
,
27
(
5
), pp.
1159
1165
(in Chinese).
10.
Stadtfeld
,
H. J.
,
2010
, “
CONIFACE Face Gear Cutting and Grinding
,”
Gear Solutions
,
10
(
1
), pp.
38
47
.http://www.gearsolutions.com/article/detail/6020/coniface-face-gear-cutting-and-grinding
11.
Stadtfeld
,
H. J.
, 2012, “
Method and Tool for Manufacturing Face Gear
,” The Gleason Works, Rochester, NY, U.S. Patent No.
US2012/0099939 A1
.http://www.google.com/patents/US20120099939
12.
Stadtfeld
,
H. J.
,
2007
, “
Straight Bevel Gears on Phoenix Machines Using Coniflex Tools
,”
Gear Solutions
,
2007
(
10
), pp.
32
39
.http://www.gearsolutions.com/article/detail/5763/straight-bevel-gears-on-phoenix-machines-using-coniflex-tools
13.
Stadtfeld
,
H. J.
,
Gaiser
,
U.
,
Ervay
,
E. D.
, and
Krenzer
,
T. J.
, 2008, “
Manufacturing Straight Bevel Gears
,” The Gleason Works, Rochester, NY, U.S. Patent No.
US7364391 B1
.http://www.google.com/patents/US7364391
14.
Akimov
,
V. V.
,
Lagutin
,
S. A.
, and
Volkov
,
A. E.
,
2007
, “
New Approach to the Local Synthesis of Spiral Bevel Gears
,”
ASME
Paper No. DETC2007-34024.
15.
Fuentes
,
A.
,
Gonzalez
,
P. I.
,
Litvin
,
F. L.
,
Hayasaka
,
K.
, and
Yukishima
,
K.
,
2005
, “
Design, Manufacture, and Evaluation of Prototypes of Low-Noise High-Endurance Spiral Bevel Gear Drives
,”
ASME
Paper No. DETC2005-84013.
16.
Fan
,
Q.
,
2006
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1315
1327
.
17.
Simon
,
V.
,
2008
, “
Machine Tool Settings to Reduce the Sensitivity of Spiral Bevel Gears to Tooth Errors and Misalignments
,”
ASME J. Mech. Des.
,
130
(
8
), p.
082603
.
18.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
,
2006
, “
Design, Manufacture, Stress Analysis, and Experimental Tests of Low-Noise High Endurance Spiral Bevel Gears
,”
Mech. Mach. Theory
,
41
(
1
), pp.
83
118
.
19.
Shih
,
Y. P.
,
2010
, “
A Novel Ease-Off Flank Modification Methodology for Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1108
1124
.
20.
Artoni
,
A.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2008
, “
Nonlinear Identification of Machine Settings for Flank Form Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112602
.
21.
Mermoz
,
E.
,
Astoul
,
J.
,
Sartor
,
M.
,
Linares
,
J. M.
, and
Bernard
,
A.
,
2013
, “
A New Methodology to Optimize Spiral Bevel Gear Topography
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
119
122
.
22.
Gonzalez
,
P. I.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
,
2010
, “
Analytical Determination of Basic Machine-Tool Settings for Generation of Spiral Bevel Gears From Blank Data
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101002
.
23.
Shih
,
Y. P.
, and
Shi
,
D. C.
,
2012
, “
A Flank Correction Methodology for a Five-Axis CNC Gear Profile Grinding Machine
,”
Mech. Mach. Theory
,
47
, pp.
31
45
.
24.
Zanzi
,
C.
, and
Pedrero
,
J. I.
,
2005
, “
Application of Modified Geometry of Face Gear Drive
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
27–29
), pp.
3047
3066
.
25.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Zanzi
,
C.
,
2002
, “
Design, Generation, and Stress Analysis of Two Versions of Geometry of Face-Gear Drives
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1179
1211
.
26.
Tang
,
J. Y.
,
Yin
,
F.
, and
Chen
,
X. M.
,
2013
, “
The Principle of Profile Modified Face-Gear Grinding Based on Disk Wheel
,”
Mech. Mach. Theory
,
70
, pp.
1
15
.
27.
Tsuji
,
I.
,
Gunbara
,
H.
,
Kawasaki
,
K.
, and
Takami
,
A.
,
2011
, “
Machining and Running Test of High-Performance Face Gear Set
,”
ASME
Paper No. DETC2011-48824.
28.
Peng
,
X. L.
,
Zhang
,
L.
, and
Fang
,
Z. D.
,
2016
, “
Manufacturing Process for a Face Gear Drive With Local Bearing Contact and Controllable Unloaded Meshing Performance Based on Ease-Off Surface Modification
,”
ASME J. Mech. Des.
,
138
(
4
), p.
043302
.
29.
Lee
,
C.-K.
,
2009
, “
Manufacturing Process for a Cylindrical Crown Gear Drive With a Controllable Fourth Order Polynomial Function of Transmission Error
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
3
13
.https://doi.org/10.1016/j.jmatprotec.2008.03.065
You do not currently have access to this content.