Additive manufacturing allows a direct fabrication of any sophisticated mechanism when the clearance of each joint is sufficiently large to compensate the fabrication error, which frees the designers of cumbersome assembly jobs. Clearance design for assembly mechanism whose parts are fabricated by subtractive manufacturing has been well defined. However, the related standard for parts fabricated by additive manufacturing is still under exploration due to the fabrication error and the diversity of printing materials. For saving time and materials in a design process, a designer may fabricate a series of small mechanisms to examine their functionality before the final fabrication of a large mechanism. As a mechanism is scaled, its joint clearances may be reduced, which affects the kinematics of the mechanisms. Maintaining certain clearance for the joints during the scaling process, especially for gear mechanisms, is an intricate problem involving the analysis of nonlinear systems. In this paper, we focus on the parametric design problem for the major types of joints, which allows the mechanisms to be scaled to an arbitrary level while maintaining their kinematics. Simulation and experimental results are present to validate our designs.

References

References
1.
Ulu
,
E.
,
Korkmaz
,
E.
,
Yay
,
K.
,
Ozdoganlar
,
O. B.
, and
Kara
,
L. B.
,
2015
, “
Enhancing the Structural Performance of Additively Manufactured Objects Through Build Orientation Optimization
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111410
.
2.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
.
3.
Lanzotti
,
A.
,
Giudice
,
D. M. D.
,
Lepore
,
A.
,
Staiano
,
G.
, and
Martorelli
,
M.
,
2015
, “
On the Geometric Accuracy of RepRap Open-Source Three-Dimensional Printer
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101703
.
4.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
Sustainable Design-Oriented Level Set Topology Optimization
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011403
.
5.
Paul
,
R.
, and
Anand
,
S.
,
2015
, “
Optimization of Layered Manufacturing Process for Reducing Form Errors With Minimal Support Structures
,”
J. Manuf. Syst.
,
36
, pp.
231
243
.
6.
Lipson
,
H.
, and
Pollack
,
J. B.
,
2000
, “
Automatic Design and Manufacture of Robotic Lifeforms
,”
Nature
,
406
(
6799
), pp.
974
978
.
7.
Lipson
,
H.
,
Moon
,
F.
,
Hai
,
J.
, and
Paventi
,
C.
,
2005
, “
3-D Printing the History of Mechanisms
,”
ASME J. Mech. Des.
,
127
, pp.
123
132
.
8.
Mavroidis
,
C.
,
DeLaurentis
,
K. J.
,
Won
,
J.
, and
Alam
,
M.
,
2000
, “
Fabrication of Non-Assembly Mechanisms and Robotic Systems Using Rapid Prototyping
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
516
524
.
9.
De Laurentis
,
K. J.
,
Mavroidis
,
C.
, and
Kong
,
F. F.
,
2004
, “
Rapid Robot Reproduction
,”
IEEE Rob. Autom. Mag.
,
11
(
2
), pp.
86
92
.
10.
DeLaurentis
,
K. J.
, and
Mavroidis
,
C.
,
2004
, “
Rapid Fabrication of a Non-Assembly Robotic Hand With Embedded Components
,”
Assem. Autom.
,
24
(
4
), pp.
394
405
.
11.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graphics
,
31
(
6
), p.
130
.
12.
Chen
,
Y. H.
, and
Chen
,
Z. Z.
,
2011
, “
Joint Analysis in Rapid Fabrication of Non-Assembly Mechanisms
,”
Rapid Prototyping J.
,
17
(
6
), pp.
408
417
.
13.
Chen
,
Y.
, and
Lu
,
J.
,
2011
, “
Minimise Joint Clearance in Rapid Fabrication of Non-Assembly Mechanisms
,”
Int. J. Comput. Integr. Manuf.
,
24
(
8
), pp.
726
734
.
14.
Su
,
X. B.
,
Yang
,
Y. Q.
, and
Wang
,
D.
,
2013
, “
Digital Assembly and Direct Fabrication of Mechanism Based on Selective Laser Melting
,”
Rapid Prototyping J.
,
19
(
3
), pp.
166
172
.
15.
Wei
,
X.
,
Tian
,
Y.
, and
Joneja
,
A.
,
2016
, “
A Study on Revolute Joints in 3D-Printed Non-Assembly Mechanisms
,”
Rapid Prototyping J.
,
22
(
6
), pp.
901
933
.
16.
Wei
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Li
,
Y.
,
2016
, “
Novel Design and 3-D Printing of Nonassembly Controllable Pneumatic Robots
,”
IEEE/ASME Trans. Mechatronics
,
21
(
2
), pp.
649
659
.
17.
Fuge
,
M.
,
Carmean
,
G.
,
Cornelius
,
J.
, and
Elder
,
R.
,
2015
, “
The MechProcessor: Helping Novices Design Printable Mechanisms Across Different Printers
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111415
.
18.
Marimuthu
,
P.
, and
Muthuveerappan
,
G.
,
2016
, “
Investigation of Load Carrying Capacity of Asymmetric High Contact Ratio Spur Gear Based on Load Sharing Using Direct Gear Design Approach
,”
Mech. Mach. Theory
,
96
(Pt. 1), pp.
52
74
.
19.
Nayak
,
S.
, and
Mishra
,
S.
,
2007
, “
Effect of Addendum Modification on Root Stress Involute Spur Gears
,”
Bachelor thesis
, National Institute of Technology, Rourkela, India.http://ethesis.nitrkl.ac.in/4245/1/Effect_of_Addendum_Modification_on_Root_Stress_Involute_Spur_Gears.pdf
20.
Litvin
,
F. L.
,
Wang
,
A. G.
, and
Handschuh
,
R. F.
,
1998
, “
Computerized Generation and Simulation of Meshing and Contact of Spiral Bevel Gears With Improved Geometry
,”
Comput. Methods Appl. Mech. Eng.
,
158
(1–2), pp.
35
64
.
21.
Alipiev
,
O.
,
2011
, “
Geometric Design of Involute Spur Gear Drives With Symmetric and Asymmetric Teeth Using the Realized Potential Method
,”
Mech. Mach. Theory
,
46
(
1
), pp.
10
32
.
22.
Wang
,
P. Y.
,
Fan
,
S. C.
, and
Huang
,
Z. G.
,
2011
, “
Spiral Bevel Gear Dynamic Contact and Tooth Impact Analysis
,”
ASME J. Mech. Des.
,
133
(
8
), p.
084501
.
23.
Sun
,
T.
, and
Hu
,
H. Y.
,
2003
, “
Nonlinear Dynamics of a Planetary Gear System With Multiple Clearances
,”
Mech. Mach. Theory
,
38
(12), pp.
1371
1390
.
24.
Guo
,
Y.
, and
Robert
,
G. P.
,
2012
, “
Dynamic Analysis of Planetary Gears With Bearing Clearance
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041002
.
25.
Ericsona
,
T. M.
, and
Robert
,
G. P.
,
2014
, “
Experimental Measurement of the Effects of Torque on the Dynamic Behavior and System Parameters of Planetary Gears
,”
Mech. Mach. Theory
,
74
, pp.
370
389
.
26.
Liu
,
Z.
,
Zhao
,
J.
, and
Zhang
,
G.
,
2017
, “
Study on Interactions Between Tooth Backlash and Journal Bearing Clearance Nonlinearity in Spur Gear Pair System
,”
Mech. Mach. Theory
,
107
, pp.
229
245
.
27.
Zhang
,
X. C.
,
Zhang
,
X. M.
, and
Chen
,
Z.
,
2014
, “
Dynamic Analysis of a 3-RRR Parallel Mechanism With Multiple Clearance Joints
,”
Mech. Mach. Theory
,
78
, pp.
105
115
.
28.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-Dependent Reliability Analysis for Function Generation Mechanisms With Random Joint Clearances
,”
Mech. Mach. Theory
,
92
, pp.
184
19
.
29.
Wang
,
G.
,
Liu
,
H.
,
Deng
,
P.
,
Yin
,
K.
, and
Zhang
,
G.
,
2017
, “
Dynamic Analysis of 4-SPS/CU Parallel Mechanism Considering Three-Dimensional Wear of Spherical Joint With Clearance
,”
ASME J. Tribol.
,
139
(
2
), p.
021608
.
You do not currently have access to this content.