Accurate modeling of static load distribution of balls is very useful for proper design and sizing of ball screw mechanisms (BSMs); it is also a starting point in modeling the dynamics, e.g., friction behavior, of BSMs. Often, it is preferable to determine load distribution using low order models, as opposed to computationally unwieldy high order finite element (FE) models. However, existing low order static load distribution models for BSMs are inaccurate because they ignore the lateral (bending) deformations of screw/nut and do not adequately consider geometric errors, both of which significantly influence load distribution. This paper presents a low order static load distribution model for BSMs that incorporates lateral deformation and geometric error effects. The ball and groove surfaces of BSMs, including geometric errors, are described mathematically and used to establish a ball-to-groove contact model based on Hertzian contact theory. Effects of axial, torsional, and lateral deformations are incorporated into the contact model by representing the nut as a rigid body and the screw as beam FEs connected by a newly derived ball stiffness matrix which considers geometric errors. Benchmarked against a high order FE model in case studies, the proposed model is shown to be accurate in predicting static load distribution, while requiring much less computational time. Its ease-of-use and versatility for evaluating effects of sundry geometric errors, e.g., pitch errors and ball diameter variation, on static load distribution are also demonstrated. It is thus suitable for parametric studies and optimal design of BSMs.

References

References
1.
ISO
,
2011
, “
Ball Screws—Part 1: Vocabulary and Designation
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 3408-1:2006
https://www.iso.org/obp/ui/#iso:std:iso:3408:-1:ed-2:v1:en.
2.
Altintas
,
Y.
,
Verl
,
A.
,
Brecher
,
C.
,
Uriarte
,
L.
, and
Pritschow
,
G.
,
2011
, “Machine Tool Feed Drives,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
779
796
.
3.
Balaban
,
E.
,
Bansal
,
P.
,
Stoelting
,
P.
,
Saxena
,
A.
,
Geobel
,
K. F.
, and
Curran
,
S.
,
2009
, “
A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems
,”
IEEE
Aerospace Conference, Big Sky, MT, Mar. 7–14, pp.
1
13
.
4.
Baeuml
,
M.
,
Dobre
,
F.
,
Hochmuth
,
H.
,
Kraus
,
M.
,
Krehmer
,
H.
,
Langer
,
R.
, and
Reif
,
D.
,
2014
,
The Chassis of the Future
, Schaeffler Technologies AG & Co. KG, Herzogenaurach, Germany.
5.
Shimoda
,
H.
,
Ando
,
Y.
, and
Izawa
,
M.
,
1975
, “Study on the Load Distribution in the Ball Screw (1st Report),”
J. Jpn. Soc. Precis. Eng.
,
41
(
489
), pp.
954
959
.
6.
Yoshida
,
T.
,
Tozaki
,
Y.
, and
Matsumoto
,
S.
,
2003
, “Study on Load Distribution and Ball Motion of Ball Screw,”
Toraibarojisuto/J. Jpn Soc. Tribol.
,
48
(
8
), pp.
659
666
.https://www.scopus.com/record/display.uri?eid=2-s2.0-0142055926&origin=inward&txGid=48eef4653fc205cb8ca3ae6043f06adb
7.
Mei
,
X.
,
Tsutsumi
,
M.
,
Tao
,
T.
, and
Sun
,
N.
,
2003
, “Study on the Load Distribution of Ball Screws With Errors,”
Mech. Mach. Theory
,
38
(
11
), pp.
1257
1269
.
8.
Bertolaso
,
R.
,
Cheikh
,
M.
,
Barranger
,
Y.
,
Dupré
,
J.-C.
,
Germaneau
,
A.
, and
Doumalin
,
P.
,
2014
, “Experimental and Numerical Study of the Load Distribution in a Ball-Screw System,”
J. Mech. Sci. Technol.
,
28
(
4
), pp.
1411
1420
.
9.
Xu
,
S.
,
Yao
,
Z.
,
Sun
,
Y.
, and
Shen
,
H.
,
2014
, “Load Distribution of Ball Screw With Consideration of Contact Angle Variation and Geometry Errors,”
ASME
Paper No. IMECE2014-37380.
10.
Abevi
,
F.
,
Daidie
,
A.
,
Chaussumier
,
M.
, and
Sartor
,
M.
,
2015
, “Static Load Distribution and Axial Stiffness in a Planetary Roller Screw Mechanism,”
ASME J. Mech. Des.
,
138
(
1
), p.
012301
.
11.
Okwudire
,
C. E.
, and
Altintas
,
Y.
,
2009
, “Hybrid Modeling of Ball Screw Drives With Coupled Axial, Torsional, and Lateral Dynamics,”
ASME J. Mech. Des.
,
131
(
7
), p.
071002
.
12.
Okwudire
,
C. E.
,
2011
, “Improved Screw–Nut Interface Model for High-Performance Ball Screw Drives,”
ASME J. Mech. Des.
,
133
(
4
), p.
041009
.
13.
Okwudire
,
C. E.
,
2012
, “Reduction of Torque-Induced Bending Vibrations in Ball Screw-Driven Machines Via Optimal Design of the Nut,”
ASME J. Mech. Des.
,
134
(
11
), p.
111008
.
14.
Huang
,
H.-T. T.
, and
Ravani
,
B.
,
1997
, “Contact Stress Analysis in Ball Screw Mechanism Using the Tubular Medial Axis Representation of Contacting Surfaces,”
ASME J. Mech. Des.
,
119
(
1
), pp.
8
14
.
15.
Cuttino
,
J. F.
,
Dow
,
T. A.
, and
Knight
,
B. F.
,
1997
, “Analytical and Experimental Identification of Nonlinearities in a Single-Nut, Preloaded Ball Screw,”
ASME J. Mech. Des.
,
119
(
1
), pp.
15
19
.
16.
Wei
,
C. C.
, and
Lin
,
J. F.
,
2003
, “Kinematic Analysis of the Ball Screw Mechanism Considering Variable Contact Angles and Elastic Deformations,”
ASME J. Mech. Des.
,
125
(
4
), pp.
717
733
.
17.
Wei
,
C. C.
,
Lin
,
J. F.
, and
Horng
,
J. H.
,
2009
, “Analysis of a Ball Screw With a Preload and Lubrication,”
Tribol. Int.
,
42
(
11–12
), pp.
1816
1831
.
18.
Jones
,
M. H.
, and
Velinsky
,
S. A.
,
2014
, “Stiffness of the Roller Screw Mechanism by the Direct Method,”
Mech. Based Des. Struct. Mach.
,
42
(
1
), pp.
17
34
.
19.
Ma
,
S.
,
Liu
,
G.
,
Tong
,
R.
, and
Fu
,
X.
,
2015
, “A Frictional Heat Model of Planetary Roller Screw Mechanism Considering Load Distribution,”
Mech. Based Des. Struct. Mach.
,
43
(
2
), pp.
164
182
.
20.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Prentice Hall
, Upper Saddle River, NJ.
21.
Lin
,
B.
, and
Okwudire
,
C. E.
,
2016
, “Low-Order Contact Load Distribution Model for Ball Nut Assemblies,”
SAE Int. J. Passenger Cars Mech. Syst.
,
9
(
2
), pp.
535
540
.
22.
Feng
,
H.-T.
,
Wang
,
Y.-L.
,
Li
,
C.-M.
, and
Tao
,
W.-J.
,
2011
, “An Automatic Measuring Method and System Using a Light Curtain for the Thread Profile of a Ballscrew,”
Meas. Sci. Technol.
,
22
(
8
), p.
085106
.
23.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press, Cambridge, UK
.
24.
Spivak
,
M.
,
1979
,
A Comprehensive Introduction to Differential Geometry
, Vol. 1,
Publish or Perish
, Houston, TX.
25.
Zaeh
,
M. F.
,
Oertli
,
T.
, and
Milberg
,
J.
,
2004
, “Finite Element Modelling of Ball Screw Feed Drive Systems,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
289
292
.
26.
Hutton
,
D.
,
2003
,
Fundamentals of Finite Element Analysis
,
McGraw-Hill
, New York.
27.
Wall
,
M. E.
,
Rechtsteiner
,
A.
, and
Rocha
,
L. M.
,
2003
, “Singular Value Decomposition and Principal Component Analysis,”
A Practical Approach to Microarray Data Analysis
, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.
91
109
.
28.
NSK Ltd.
,
2003
, “NSK Precision Machine Components,” NSK Cat. No. E3162D.
29.
ANSYS,
2013
, “ANSYS Meshing User’s Guide,” ANSYS Inc., Canonsburg, PA, accessed Oct. 10, 2017, http://www.academia.edu/27974461/ANSYS_Meshing_Users_Guide
You do not currently have access to this content.