Due to the nested optimization loop structure and time-demanding computation of structural response, the computational accuracy and cost of reliability-based design optimization (RBDO) have become a challenging issue in engineering application. Kriging-model-based approach is an effective tool to improve the computational efficiency in the practical RBDO problems; however, a larger number of sample points are required for meeting high computational accuracy requirements in traditional methods. In this paper, an adaptive directional boundary sampling (ADBS) method is developed in order to greatly reduce the computational sample points with a reasonable accuracy, in which the sample points are added along the ideal descending direction of objective function. Furthermore, only sample points located near the constraint boundary are mainly selected in the vicinity of the optimum point according to the strategy of multi-objective optimization; thus, substantial number of sample points located in the failure region is neglected, resulting in the improved performance of computational efficiency. Four numerical examples and one engineering application are provided for demonstrating the efficiency and accuracy of the proposed sampling method.

References

References
1.
Elishakoff
,
I.
,
1995
, “
Essay on Uncertainties in Elastic and Viscoelastic Structures and Viscoelastic Structures-From a M Freudenthal's Criticisms to Modern Convex Modelling
,”
Comput. Struct.
,
56
(
6
), pp.
871
895
.
2.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Method. Appl. Mech. Eng.
,
198
(
1
), pp.
14
27
.
3.
Li
,
M.
, and
Azarm
,
S.
,
2008
, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081402
.
4.
Hu
,
Z.
, and
Du
,
X. P.
,
2015
, “
First Order Reliability Method for Time-Variant Problems Using Series Expansions
,”
Struct Multidisc. Optim.
,
51
(
1
), pp.
1
21
.
5.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
6.
Echard
,
B.
,
Gayton
,
N.
,
Lemaire
,
M.
, and
Relun
,
N.
,
2013
, “
A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities With Time-Demanding Numerical Models
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
232
240
.
7.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
.
8.
Chen
,
Z. Z.
,
Qiu
,
H. B.
,
Gao
,
L.
,
Su
,
L.
, and
Li
,
P. G.
,
2013
, “
An Adaptive Decoupling Approach for Reliability-Based Design Optimization
,”
Comput. Struct.
,
117
(
2
), pp.
58
66
.
9.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidisc. Optim.
,
48
(
5
), pp.
893
907
.
10.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2014
, “
Second-Order Reliability Method-Based Inverse Reliability Analysis Using Hessian Update for Accurate and Efficient Reliability-Based Design Optimization
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
773
792
.
11.
Lee
,
I.
,
Noh
,
Y.
, and
Yoo
,
D.
,
2012
, “
A Novel Second-Order Reliability Method (SORM) Using Noncentral or Generalized Chi-Squared Distributions
,”
ASME J. Mech. Des.
,
134
(
10
), p.
121005
.
12.
Du
,
X.
,
Guo
,
J.
, and
Beeram
,
H.
,
2008
, “
Sequential Optimization and Reliability Assessment for Multidisciplinary Systems Design
,”
Struct. Multidisc. Optim.
,
35
(
2
), pp.
117
130
.
13.
Meng
,
Z.
,
Yang
,
D.
,
Zhou
,
H.
, and
Wang
,
B. P.
,
2017
, “
Convergence Control of Single Loop Approach for Reliability-Based Design Optimization
,”
Struct. Multidisc. Optim.
,
57
(3), pp. 1079–1091.
14.
Meng
,
Z.
,
Hu
,
H.
, and
Zhou
,
H.
,
2018
, “
Super Parametric Convex Model and Its Application for Non-Probabilistic Reliability-Based Design Optimization
,”
Appl. Math. Model
,
55
, pp.
354
370
.
15.
Lee
,
J. O.
,
Yang
,
Y. S.
, and
Ruy
,
W. S.
,
2002
, “
A Comparative Study on Reliability-Index and Target-Performance-Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
,
80
(
3–4
), pp.
257
269
.
16.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
121
(
4
), pp.
557
564
.
17.
Rahman
,
S.
, and
Wei
,
D.
,
2006
, “
A Univariate Approximation at Most Probable Point for Higher-Order Reliability Analysis
,”
Int. J. Solids. Struct.
,
43
(
9
), pp.
2820
2839
.
18.
Rahman
,
S.
, and
Xu
,
H.
,
2004
, “
A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics
,”
Probab. Eng. Mech.
,
19
(
4
), pp.
393
408
.
19.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
.
20.
Yang
,
D.
,
Li
,
G.
, and
Cheng
,
G.
,
2006
, “
Convergence Analysis of First Order Reliability Method Using Chaos Theory
,”
Comput. Struct.
,
84
(
8–9
), pp.
563
571
.
21.
Meng
,
Z.
,
Li
,
G.
,
Wang
,
B. P.
, and
Hao
,
P.
,
2015
, “
A Hybrid Chaos Control Approach of the Performance Measure Functions for Reliability-Based Design Optimization
,”
Comput. Struct.
,
146
(
1
), pp.
32
43
.
22.
Keshtegar
,
B.
,
Baharom
,
S.
, and
El-Shafie
,
A.
,
2017
, “
Self-Adaptive Conjugate Method for a Robust and Efficient Performance Measure Approach for Reliability-Based Design Optimization
,”
Eng. Comput.
,
34
(
1
), pp.
187
202
.
23.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
24.
Lee
,
I.
,
Shin
,
J.
, and
Choi
,
K.
,
2013
, “
Equivalent Target Probability of Failure to Convert High-Reliability Model to Low-Reliability Model for Efficiency of Sampling-Based RBDO
,”
Struct. Multidisc. Optim.
,
48
(
2
), pp.
235
248
.
25.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2015
, “
Sequential Optimization and Reliability Assessment Based on Dimension Reduction Method for Accurate and Efficient Reliability-Based Design Optimization
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1349
1354
.
26.
Cho
,
T. M.
, and
Lee
,
B. C.
,
2011
, “
Reliability-Based Design Optimization Using Convex Linearization and Sequential Optimization and Reliability Assessment Method
,”
Struct. Saf.
,
33
(
1
), pp.
42
50
.
27.
Jiang
,
C.
,
Qiu
,
H.
,
Gao
,
L.
,
Cai
,
X.
, and
Li
,
P.
,
2017
, “
An Adaptive Hybrid Single-Loop Method for Reliability-Based Design Optimization Using Iterative Control Strategy
,”
Struct. Multidisc. Optim.
,
56
(6), pp. 1271–1286.
28.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2007
, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
29.
Meng
,
Z.
,
Zhou
,
H.
,
Li
,
G.
, and
Yang
,
D.
,
2016
, “
A Decoupled Approach for Non-Probabilistic Reliability-Based Design Optimization
,”
Comput. Struct.
,
175
(
10
), pp.
65
73
.
30.
Youn
,
B. D.
,
Choi
,
K. K.
,
Yang
,
R. J.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidisc. Optim.
,
26
(
3–4
), pp.
272
283
.
31.
Acar
,
E.
, and
Solanki
,
K.
,
2009
, “
System Reliability Based Vehicle Design for Crashworthiness and Effects of Various Uncertainty Reduction Measures
,”
Struct. Multidisc. Optim.
,
39
(
3
), pp.
311
325
.
32.
Ju
,
B. H.
, and
Lee
,
B. C.
,
2008
, “
Reliability-Based Design Optimization Using a Moment Method and a Kriging Metamodel
,”
Eng. Optim.
,
40
(
5
), pp.
421
438
.
33.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
A New Response Surface Methodology for Reliability-Based Design Optimization
,”
Comput. Struct.
,
82
(
2–3
), pp.
241
256
.
34.
Lee
,
J.
, and
Song
,
C.
,
2011
, “
Role of Conservative Moving Least Squares Methods in Reliability Based Design Optimization: A Mathematical Foundation
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121005
.
35.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
12100701
.
36.
Basudhar
,
A.
, and
Missoum
,
S.
,
2008
, “
Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines
,”
Comput. Struct.
,
86
(
19–20
), pp.
1904
1917
.
37.
Park
,
J. S.
,
1994
, “
Optimal Latin-Hypercube Designs for Computer Experiments
,”
J. Stat. Plan. Infer.
,
39
(
1
), pp.
95
111
.
38.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global. Optim.
,
13
(
4
), pp.
455
492
.
39.
Yang
,
X.
,
Liu
,
Y.
,
Zhang
,
Y.
, and
Yue
,
Z.
,
2015
, “
Probability and Convex Set Hybrid Reliability Analysis Based on Active Learning Kriging Model
,”
Appl. Math. Modell.
,
39
(
14
), pp.
3954
3971
.
40.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
,
2008
, “
A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031401
.
41.
Wang
,
Z.
, and
Wang
,
P.
,
2013
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
42.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.
43.
Bichon
,
B. J.
,
McFarland
,
J. M.
, and
Mahadevan
,
S.
,
2011
, “
Efficient Surrogate Models for Reliability Analysis of Systems With Multiple Failure Modes
,”
Reliab. Eng. Syst. Saf.
,
96
(
10
), pp.
1386
1395
.
44.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2012
, “
Efficient Global Surrogate Modeling for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011009
.
45.
Lee
,
T. H.
, and
Jung
,
J. J.
,
2008
, “
A Sampling Technique Enhancing Accuracy and Efficiency of Metamodel-Based RBDO: Constraint Boundary Sampling
,”
Comput. Struct.
,
86
(
13–14
), pp.
1463
1476
.
46.
Chen
,
Z. Z.
,
Qiu
,
H. B.
,
Gao
,
L.
,
Li
,
X. K.
, and
Li
,
P. G.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidisc. Optim.
,
49
(
3
), pp.
401
416
.
47.
Chen
,
Z. Z.
,
Peng
,
S. P.
,
Li
,
X. K.
,
Qiu
,
H. B.
,
Xiong
,
H. D.
,
Gao
,
L.
, and
Li
,
P. G.
,
2015
, “
An Important Boundary Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidisc. Optim.
,
52
(
1
), pp.
55
70
.
48.
Li
,
X. K.
,
Qiu
,
H. B.
,
Chen
,
Z. Z.
,
Gao
,
L.
, and
Shao
,
X. Y.
,
2016
, “
A Local Kriging Approximation Method Using MPP for Reliability-Based Design Optimization
,”
Comput. Struct.
,
162
(
1
), pp.
102
115
.
49.
Dubourg
,
V.
, and
Sudret
,
B.
,
2014
, “
Meta-Model-Based Importance Sampling for Reliability Sensitivity Analysis
,”
Struct. Saf.
,
49
, pp.
27
36
.
50.
Huang
,
X.
,
Chen
,
J.
, and
Zhu
,
H.
,
2016
, “
Assessing Small Failure Probabilities by AK–SS: An Active Learning Method Combining Kriging and Subset Simulation
,”
Struct. Saf.
,
59
, pp.
86
95
.
51.
Williams
,
B. J.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer-Verlag
,
Berlin
.
52.
Konak
,
A.
,
Coit
,
D. W.
, and
Smith
,
A. E.
,
2006
, “
Multi-objective Optimization Using Genetic Algorithms: A tutorial
,”
Reliab. Eng. Syst. Saf.
,
91
(9), pp. 992–1007.
53.
Li
,
M.
,
2011
, “
An Improved Kriging-Assisted Multi-Objective Genetic Algorithm
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071008
.
54.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
55.
Reynoso-Meza
,
G.
,
Blasco
,
X.
,
Sanchis
,
J.
, and
Herrero
,
J. M.
,
2013
, “
Comparison of Design Concepts in Multi-Criteria Decision-Making Using Level Diagrams
,”
Inform. Sci.
,
221
, pp.
124
141
.
56.
Zio
,
E.
, and
Bazzo
,
R.
,
2011
, “
Level Diagrams Analysis of Pareto Front for Multiobjective System Redundancy Allocation
,”
Reliab. Eng. Syst. Saf.
,
96
(
5
), pp.
569
580
.
57.
Venkataraman
,
S.
,
Lamberti
,
L.
,
Haftka
,
R. T.
, and
Johnson
,
T. F.
,
2003
, “
Challenges in Comparing Numerical Solutions for Optimum Weights of Stiffened Shells
,”
J. Spacecr. Rockets
,
40
(
2
), pp.
183
192
.
You do not currently have access to this content.