Reliability-based design optimization (RBDO) algorithms typically assume a designer's prior knowledge of the objective function along with its explicit mathematical formula and the probability distributions of random design variables. These assumptions may not be valid in many industrial cases where there is limited information on variable variability and the objective function is subjective without mathematical formula. A new methodology is developed in this research to model and solve problems with qualitative objective functions and limited information about random variables. Causal graphs and design structure matrix are used to capture designer's qualitative knowledge of the effects of design variables on the objective. Maximum entropy theory and Monte Carlo simulation are used to model random variables' variability and derive reliability constraint functions. A new optimization problem based on a meta-objective function and transformed deterministic constraints is formulated, which leads close to the optimum of the original mathematical RBDO problem. The developed algorithm is tested and validated with the Golinski speed reducer design case. The results show that the algorithm finds a near-optimal reliable design with less initial information and less computation effort as compared to other RBDO algorithms that assume full knowledge of the problem.

References

References
1.
Pignatiello
,
J. J.
, Jr.
,
1988
, “
An Overview of the Strategy and Tactics of Taguchi
,”
IIE Trans.
,
20
(
3
), pp.
247
254
.
2.
Lim
,
W.
,
Jang
,
J.
,
Park
,
S.
,
Amalnerkar
,
E.
, and
Lee
,
T. H.
, 2013, “
Nonparametric Reliability-Based Design Optimization Using Sign Test on Limited Discrete Information
,” APCOM & ISCM, Singapore, accessed July 10, 2017, http://www.sci-en-tech.com/apcom2013/APCOM2013-Proceedings/PDF_FullPaper/1788.pdf
3.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
,
2005
, “
Reliability Estimation and Design With Insufficient Data Based on Possibility Theory
,”
AIAA J.
,
43
(
8
), pp.
1696
1705
.
4.
Du
,
L.
,
Choi
,
K. K.
,
Youn
,
B. D.
, and
Gorsich
,
D.
,
2006
, “
Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
928
935
.
5.
Ghasemi
,
H.
,
Brighenti
,
R.
,
Zhuang
,
X.
,
Muthu
,
J.
, and
Rabczuk
,
T.
,
2015
, “
Optimal Fiber Content and Distribution in Fiber-Reinforced Solids Using a Reliability and NURBS Based Sequential Optimization Approach
,”
Struct. Multidiscip. Optim.
,
51
(
1
), pp.
99
112
.
6.
Li
,
X.
,
Qiu
,
H.
,
Chen
,
Z.
,
Gao
,
L.
, and
Shao
,
X.
,
2016
, “
A Local Kriging Approximation Method Using MPP for Reliability-Based Design Optimization
,”
Comput. Struct.
,
162
, pp.
102
115
.
7.
Guo
,
S.
,
2001
, “
A Non-Probabilistic Model of Structural Reliability Based on Interval Analysis
,”
Chin. J. Comput. Mech
,
18
, pp.
56
60
.
8.
Qiu
,
Z.
,
Yang
,
D.
, and
Elishakoff
,
I.
,
2008
, “
Combination of Structural Reliability and Interval Analysis
,”
Acta Mech. Sin.
,
24
(
1
), pp.
61
67
.
9.
Du
,
X.
,
2007
, “
Interval Reliability Analysis
,”
ASME
Paper No. DETC2007-34582.
10.
Qi
,
W.
, and
Qiu
,
Z.
,
2013
, “
Non-Probabilistic Reliability-Based Structural Design Optimization Based on the Interval Analysis Method
,”
Sci. Sin. Phys. Mech. Astron.
,
43
(
1
), p.
85
.
11.
Guo
,
J.
, and
Du
,
X.
,
2010
, “
Reliability Analysis for Multidisciplinary Systems With Random and Interval Variables
,”
AIAA J.
,
48
(
1
), pp.
82
91
.
12.
Zhang
,
P.
,
Li
,
W.
, and
Wang
,
S.
,
2012
, “
Reliability-Oriented Distribution Network Reconfiguration Considering Uncertainties of Data by Interval Analysis
,”
Int. J. Electr. Power Energy Syst.
,
34
(
1
), pp.
138
144
.
13.
Ren
,
Z.
,
He
,
S.
,
Zhang
,
D.
,
Zhang
,
Y.
, and
Koh
,
C.-S.
,
2016
, “
A Possibility-Based Robust Optimal Design Algorithm in Preliminary Design Stage of Electromagnetic Devices
,”
IEEE Trans. Magn.
,
52
(
3
), pp.
1
4
.
14.
Kai-Yuan
,
C.
,
Chuan-Yuan
,
W.
, and
Ming-Lian
,
Z.
,
1991
, “
Fuzzy Variables as a Basis for a Theory of Fuzzy Reliability in the Possibility Context
,”
Fuzzy Sets Syst.
,
42
(
2
), pp.
145
172
.
15.
Srivastava
,
R. K.
,
Deb
,
K.
, and
Tulshyan
,
R.
,
2013
, “
An Evolutionary Algorithm Based Approach to Design Optimization Using Evidence Theory
,”
ASME J. Mech. Des.
,
135
(
8
), p.
081003
.
16.
Youn
,
B. D.
, and
Wang
,
P.
,
2008
, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
,
36
(
2
), pp.
107
123
.
17.
Li
,
R.
, and
Huang
,
Y.
,
2007
, “
Formula of Density Function of Sum of Independent Random Variable of Uniform Distribution
,”
J. Nanyang Norm. Univ.
,
3
(
4
), pp.
18
20
.
18.
Gary
,
M.
,
Choudhary
,
S.
, and
Kalla
,
S. L.
,
2009
, “
On the Sum of Two Triangular Random Variables
,”
Int. J. Optim. Theory Methods Appl.
,
1
(3), pp.
279
290
.https://www.researchgate.net/profile/Sangeeta_Choudhary7/publication/267190521_On_the_sum_of_two_triangular_random_variables/links/5459d1190cf26d5090ad175b/On-the-sum-of-two-triangular-random-variables.pdf
19.
Glickman
,
T. S.
, and
Xu
,
F.
,
2008
, “
The Distribution of the Product of Two Triangular Random Variables
,”
Stat. Probab. Lett.
,
78
(
16
), pp.
2821
2826
.
20.
Subramani
,
N.
, and
Downey
,
D.
,
2017
, “
PAG2ADMG: A Novel Methodology to Enumerate Causal Graph Structures
,” 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, Feb. 4–0.
21.
Li
,
Q.
,
2013
, “
A Novel Likert Scale Based on Fuzzy Sets Theory
,”
Expert Syst. Appl.
,
40
(
5
), pp.
1609
1618
.
22.
Dawes
,
J.
, 2012, “
Do Data Characteristics Change According to the Number of Scale Points Used? An Experiment Using 5 Point, 7 Point and 10 Point Scales
,”
Int. J. Market Res.
,
51
(1), pp. 1–20.https://ssrn.com/abstract=2013613
23.
Joshi
,
A.
,
Kale
,
S.
,
Chandel
,
S.
, and
Pal
,
D. K.
,
2015
, “
Likert Scale: Explored and Explained
,”
Br. J. Appl. Sci. Technol.
,
7
(
4
), pp.
396
403
.
24.
Norman
,
G.
,
2010
, “
Likert Scales, Levels of Measurement and the “Laws” of Statistics
,”
Adv. Health Sci. Educ.
,
15
(
5
), pp.
625
632
.
25.
Albaum
,
G.
,
1997
, “
The Likert Scale Revisited: An Alternate Version
,”
J. Mark. Res. Soc.
,
39
(
2
), pp.
331
332
.
26.
Montgomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
,
Wiley
, Hoboken, NJ.
27.
Jonsson
,
A.
, and
Barto
,
A.
,
2006
, “
Causal Graph Based Decomposition of Factored MDPS
,”
J. Mach. Learn. Res.
,
7
, pp.
2259
2301
.http://www.jmlr.org/papers/volume7/jonsson06a/jonsson06a.pdf
28.
Stewart
,
G. W.
,
2001
,
Matrix Algorithms
(Eigensystems, Vol.
2
),
SIAM
, New Delhi.
29.
Cho
,
T. M.
, and
Lee
,
B. C.
,
2010
, “
Reliability-Based Design Optimization Using a Family of Methods of Moving Asymptotes
,”
Struct. Multidiscip. Optim.
,
42
(
2
), pp.
255
268
.
30.
Rajan, A.
,
Ooi, M. P.
,
Kuang, Y. C.
, and
Demidenko, S. N.
, 2017, “
Reliability-based Design Optimisation of Technical Systems: Analytical Response Surface Moments Method
,”
J. Eng.
,
2017
(3), pp. 36–46.
31.
Shan
,
S.
, and
Wang
,
G. G.
,
2008
, “
Reliable Design Space and Complete Single-Loop Reliability-Based Design Optimization
,”
Reliab. Eng. Syst. Saf.
,
93
(
8
), pp.
1218
1230
.
32.
Roth
,
Z.
, and
Baram
,
Y.
,
1996
, “
Multidimensional Density Shaping by Sigmoids
,”
IEEE Trans. Neural Networks
,
7
(
5
), pp.
1291
1298
.
33.
Jaynes
,
E. T.
,
1957
, “
Information Theory and Statistical Mechanics
,”
Phys. Rev.
,
106
(
4
), pp.
620
630
.
34.
Du
,
X.
, and
Chen
,
W.
,
2002
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME
Paper No. DETC2002/DAC-34127.
35.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2007
, “
A Single-Loop Approach for System Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1215
1224
.
36.
Meng
,
Z.
,
Zhou
,
H.
,
Li
,
G.
, and
Hu
,
H.
,
2017
, “
A Hybrid Sequential Approximate Programming Method for Second-Order Reliability-Based Design Optimization Approach
,”
Acta Mech.
,
228
(5), pp.
1965
1978
.
37.
Golinski
,
J.
,
1970
, “
Optimal Synthesis Problems Solved by Means of Nonlinear Programming and Random Methods
,”
J. Mech.
,
5
, pp.
287
309
.
You do not currently have access to this content.