The structure of pomelo peel arouses research interest in recent years because of the outstanding damping and energy dissipating performance of the pomelo peel. Researchers found that pomelo peel has varying pore size through the peel thickness; the pore size gradient is one of the key reasons leading to superior energy dissipation performance of pomelo peel. In this paper, we introduce a method to model pomelo peel bioinspired foams with nonuniform pore distribution. We generate the skeletal open cell structure of the bioinspired foams using Voronoi tessellation. The skeleton of the bioinspired foams is built as three-dimension (3D) beam elements in a full-scale finite element model. The quasi-static and dynamic mechanical behaviors of the pomelo peel bioinspired foams could be derived through a finite element analysis (FEA). We illustrate our method using a case study of pomelo peel bioinspired aluminum foams under quasi-static compression and free fall impact circumstances. The case study results validate our method and demonstrate the superior impact resistance and damping behavior of bioinspired foam with gradient porosity for designers.

References

References
1.
Fischer
,
S. F.
,
Thielen
,
M.
,
Loprang
,
R. R.
,
Seidel
,
R.
,
Fleck
,
C.
,
Speck
,
T.
, and
Bührig-Polaczek
,
A.
,
2010
, “
Pummelos as Concept Generators for Biomimetically Inspired Low Weight Structures With Excellent Damping Properties
,”
Adv. Eng. Mater.
,
12
(
12
), pp.
B658
B663
.
2.
Thielen
,
M.
,
Schmitt
,
C. N. Z.
,
Eckert
,
S.
,
Speck
,
T.
, and
Seidel
,
R.
,
2013
, “
Structure–Function Relationship of the Foam-Like Pomelo Peel (Citrus Maxima)—An Inspiration for the Development of Biomimetic Damping Materials With High Energy Dissipation
,”
Bioinspiration Biomimetics
,
8
(
2
), p.
025001
.
3.
Thielen
,
M.
,
Speck
,
T.
, and
Seidel
,
R.
,
2013
, “
Viscoelasticity and Compaction Behaviour of the Foam-Like Pomelo (Citrus Maxima) Peel
,”
J. Mater. Sci.
,
48
(
9
), pp.
3469
3478
.
4.
Seidel
,
R.
,
Bührig-Polaczek
,
A.
,
Fleck
,
C.
, and
Speck
,
T.
, 2009, “
Impact Resistance of Hierarchically Structured Fruit Walls and Nut Shells in View of Biomimetic Applications
,”
Sixth Plant Biomechanics Conference
, Cayenne, French Guyana, Nov. 16–21, pp.
406
411
.
5.
Thielen
,
M.
,
Schüler
,
P.
, and
Fischer
,
S. F.
,
2013
, “
Biomimetic Engineering: Learning From Nature
,”
GIT Lab. J.
, (epub).https://www.laboratory-journal.com/science/material-science/biomimetic-engineering-learning-nature
6.
Fischer
,
S. F.
,
Thielen
,
M.
,
Weiß
,
P.
,
Seidel
,
R.
,
Speck
,
T.
,
Bührig-Polaczek
,
A.
, and
Bünck
,
M.
,
2014
, “
Production and Properties of a Precision-Cast Bio-Inspired Composite
,”
J. Mater. Sci.
,
49
(
1
), pp.
43
51
.
7.
Ashby
,
M. F.
, and
Medalist
,
R. F. M.
,
1983
, “
The Mechanical Properties of Cellular Solids
,”
Metall. Trans. A
,
14
(
9
), pp.
1755
1769
.
8.
Gong
,
L.
, and
Kyriakides
,
S.
,
2005
, “
Compressive Response of Open Cell Foams—Part II: Initiation and Evolution of Crushing
,”
Int. J. Solids Struct.
,
42
(
5–6
), pp.
1381
1399
.
9.
Gong
,
L.
,
Kyriakides
,
S.
, and
Jang
,
W. Y.
,
2005
, “
Compressive Response of Open-Cell Foams—Part I: Morphology and Elastic Properties
,”
Int. J. Solids Struct.
,
42
(
5–6
), pp.
1355
1379
.
10.
Gaitanaros
,
S.
,
Kyriakides
,
S.
, and
Kraynik
,
A. M.
,
2012
, “
On the Crushing Response of Random Open-Cell Foams
,”
Int. J. Solids Struct.
,
49
(
19–20
), pp.
2733
2743
.
11.
Okabe
,
A.
,
2000
,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
Wiley
,
New York
.
12.
Rycroft, C. H.
, 2018, “
Voro++
,” University of California, Berkeley, CA, epub, accessed July 24, 2018, http://math.lbl.gov/voro++/
13.
Litewka
,
P.
,
2010
,
Finite Element Analysis of Beam-to-Beam Contact
,
Springer-Verlag
,
Berlin
.
14.
Olovsson
,
L.
,
Simonsson
,
K.
, and
Unosson
,
M.
,
2005
, “
Selective Mass Scaling for Explicit Finite Element Analyses
,”
Int. J. Numer. Methods Eng.
,
63
(
10
), pp.
1436
1445
.
15.
Prior
,
A. M.
,
1994
, “
Applications of Implicit and Explicit Finite Element Techniques to Metal Forming
,”
J. Mater. Process. Technol.
,
45
(
1–4
), pp.
649
656
.
16.
Cocchetti
,
G.
,
Pagani
,
M.
, and
Perego
,
U.
,
2013
, “
Selective Mass Scaling and Critical Time-Step Estimate for Explicit Dynamics Analyses With Solid-Shell Elements
,”
Comput. Struct.
,
127
, pp.
39
52
.
17.
ASM
,
2002
,
Atlas of Stress-Strain Curves
,
ASM International
,
Russell Township, OH
.
18.
Fan
,
S.
,
Zhang
,
T.
,
Yu
,
K.
,
Fang
,
H.
,
Xiong
,
H.
,
Dai
,
Y.
,
Ma
,
J.
,
Jiang
,
D.
, and
Zhu
,
H.
,
2017
, “
Compressive Properties and Energy Absorption Characteristics of Open-Cell Nickel Foams
,”
Trans. Nonferrous Met. Soc. China
,
27
(
1
), pp.
117
124
.
19.
Fischer
,
S. F.
,
2016
, “
Energy Absorption Efficiency of Open-Cell Pure Aluminum Foams
,”
Mater. Lett.
,
184
, pp.
208
210
.
20.
Yu
,
S.
,
Liu
,
J.
,
Wei
,
M.
,
Luo
,
Y.
,
Zhu
,
X.
, and
Liu
,
Y.
,
2009
, “
Compressive Property and Energy Absorption Characteristic of Open-Cell ZA22 Foams
,”
Mater. Des.
,
30
(
1
), pp.
87
90
.
You do not currently have access to this content.