For a number of emerging mechatronics applications, dielectric elastomers (DEs) appear as a more energy efficient, lightweight, and low-cost solution with respect to established actuation technologies based, e.g., on solenoids or pneumatic cylinders. In addition to large strain, low power consumption, and high flexibility, DE actuators (DEA) are also highly scalable. Since DE membranes can be easily manufactured in different sizes and shapes, an effective approach to scale their performance is based on properly designing the material geometry. Clearly, to perform an optimal scaling the relation between material geometry and performance has to be properly investigated. In this paper, performance scaling by means of geometry is studied for circular out-of-plane (COP) DEAs. Such actuators consist of a silicone elastomer membrane sandwiched between two electrodes (carbon black silicone mixture). DEAs with six different geometries are manufactured, and a model-based strategy is used to find an experimental relationship between geometry and electro-mechanical behavior. In addition, an effective and computationally efficient method for predicting force–displacement characteristics of different geometries is presented. The proposed method allows to easily adapt DEAs to different applications in terms of stroke and force requirement, while minimizing at the same time both characterization and prototyping effort.

References

1.
York
,
A.
,
Dunn
,
J.
, and
Seelecke
,
S.
,
2013
, “
Systematic Approach to Development of Pressure Sensors Using Dielectric Electro-Active Polymer Membranes
,”
Smart Mater. Struct.
,
22
(
9
), p.
94015
.
2.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
,
Pei
,
Q.
, and
Eckerle
,
J.
,
2004
, “
Electroactive Polymer Sensors
,” SRI International, Menlo Park, CA, U.S. Patent No.
6,809,462 B2
.http://www.google.co.in/patents/US6809462
3.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
, and
Joseph
,
J.
,
1998
, “
Electrostriction of Polymer Dielectrics With Compliant Electrodes as a Means of Actuation
,”
Sens. Actuators A
,
64
(
1
), pp.
77
85
.
4.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
5.
York
,
A.
,
Dunn
,
J.
, and
Seelecke
,
S.
,
2010
, “
Experimental Characterization of the Hysteretic and Rate-Dependent Electromechanical Behavior of Dielectric Electro-Active Polymer Actuators
,”
Smart Mater. Struct
,
19
(
9
), p.
094014
.
6.
Carpi
,
F.
,
De Rossi
,
D.
,
Kornbluh
,
R. D.
,
Pelrine
,
R. E.
, and
Sommer-Larsen
,
P.
,
2008
,
Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology
,
Elsevier
, Oxford, UK.
7.
Pelrine
,
R. E.
,
Kornbluh
,
R. D.
,
Pei
,
Q.
,
Stanford
,
S.
,
Oh
,
S.
,
Eckerle
,
J.
,
Full
,
R. J. J.
,
Rosenthal
,
M.
, and
Meijer
,
K.
, 2002, “
Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion
,”
Proc. SPIE
,
4695
, pp.
126
137
.
8.
Hill
,
M.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2017
, “
Development and Experimental Characterization of a Pneumatic Valve Actuated by a Dielectric Elastomer Membrane
,”
Smart Mater. Struct
,
26
(
8
), p.
085023
.
9.
Carpi
,
F.
,
Menon
,
C.
, and
De Rossi
,
D.
,
2010
, “
Electroactive Elastomeric Actuator for All-Polymer Linear Peristaltic Pumps
,”
IEEE/ASME Trans. Mechatronics
,
15
(
3
), pp.
460
470
.
10.
Kornbluh
,
R. D.
,
Pelrine
,
R. E.
,
Pei
,
Q.
,
Heydt
,
R.
,
Stanford
,
S.
,
Oh
,
S.
, and
Eckerle
,
J.
,
2002
, “
Electroelastomers: Applications of Dielectric Elastomer Transducers for Actuation, Generation and Smart Structures
,”
Proc. SPIE
,
4698
, pp.
254
270
.
11.
Choi
,
H. R.
,
Lee
,
S. W.
,
Jung
,
K. M.
,
Koo
,
J. C.
,
Lee
,
S. I.
,
Choi
,
R. G.
,
Jeon
,
J. W.
, and
Nam
,
J. D.
,
2004
, “
Tactile Display as a Braille Display for the Visually Disabled
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Sendai, Japan, Sept. 28–Oct. 2, pp.
1985
1990
.
12.
Heydt
,
R.
,
Kornbluh
,
R. D.
,
Eckerle
,
J.
, and
Pelrine
,
R. E.
,
2006
, “
Sound Radiation Properties of Dielectric Elastomer Electroactive Polymer Loudspeakers
,”
Proc. SPIE
,
6168
, p.
61681M
.
13.
Huu Nguyen
,
C.
,
Alici
,
G.
, and
Mutlu
,
R.
,
2014
, “
A Compliant Translational Mechanism Based on Dielectric Elastomer Actuators
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061009
.
14.
Hau
,
S.
,
Rizzello
,
G.
,
Hodgins
,
M.
,
York
,
A.
, and
Seelecke
,
S.
,
2017
, “
Design and Control of a High-Speed Positioning System Based on Dielectric Elastomer Membrane Actuators
,”
IEEE/ASME Trans. Mechatronics
,
22
(
3
), pp.
1259
1267
.
15.
Maffli
,
L.
,
Rosset
,
S.
,
Ghilardi
,
M.
,
Carpi
,
F.
, and
Shea
,
H. R.
,
2015
, “
Ultrafast All-Polymer Electrically Tunable Silicone Lenses
,”
Adv. Funct. Mater.
,
25
(
11
), pp.
1656
1665
.
16.
Araromi
,
O. A.
,
Gavrilovich
,
I.
,
Shintake
,
J.
,
Rosset
,
S.
,
Richard
,
M.
,
Gass
,
V.
, and
Shea
,
H. R.
,
2015
, “
Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
438
446
.
17.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can Be Converted?
,”
IEEE/ASME Trans. Mechatronics
,
16
(
1
), pp.
33
41
.
18.
Zanini
,
P.
,
Rossiter
,
J.
, and
Homer
,
M.
,
2017
, “
Self-Stabilizing Dielectric Elastomer Generators
,”
Smart Mater. Struct.
,
26
(
3
), p.
35037
.
19.
Physik Instrumente (PI) GmbH
,
2014
, “
PICMA® Stack Multilayer-Piezoaktoren
,” PI Ceramic GmbH, Lederhose, Germany, accessed Feb. 2, 2018, http://www.piceramic.de/produkt-detailseite/p-882-p-888-100810.html
20.
Dr. Fritz Faulhaber GmbH & CO. KG
,
2016
, “
Antriebssysteme 2016
,” Faulhaber, Schönaich, Germany, accessed Feb. 2, 2018, http://pdf.directindustry.de/pdf/faulhaber/antriebssysteme-2016/7023-637170.html
21.
Plante
,
J.-S.
,
2006
, “
Dielectric Elastomer Actuators for Binary Robotics and Mechatronics
,”
Doctoral dissertation
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/35305
22.
Tryson
,
M.
,
Kiil
,
H.-E.
, and
Benslimane
,
M. Y.
,
2009
, “
Powerful Tubular Core Free Dielectric Electro Activate Polymer (DEAP) Push Actuator
,”
Proc. SPIE
,
7287
, p.
72871F
.
23.
Jordi
,
C.
,
Michel
,
S.
,
Kovacs
,
G.
, and
Ermanni
,
P.
,
2010
, “
Scaling of Planar Dielectric Elastomer Actuators in an Agonist-Antagonist Configuration
,”
Sens. Actuators A
,
161
(
1–2
), pp.
182
190
.
24.
Gupta
,
U.
,
Godaba
,
H.
,
Zhao
,
Z.
,
Chui
,
C. K.
, and
Zhu
,
J.
,
2015
, “
Tunable Force/Displacement of a Vibration Shaker Driven by a Dielectric Elastomer Actuator
,”
Extreme Mech. Lett.
,
2
(34), pp. 72–77.
25.
Orita
,
A.
, and
Cutkosky
,
M.
,
2016
, “
Scalable Electroactive Polymer for Variable Stiffness Suspensions
,”
IEEE/ASME Trans. Mechatronics
,
21
(
6
), pp.
2836
2846
.
26.
Hodgins
,
M.
,
York
,
A.
, and
Seelecke
,
S.
,
2013
, “
Experimental Comparison of Bias Elements for Out-of-Plane DEAP Actuator System
,”
Smart Mater. Struct.
,
22
(
9
), p.
094016
.
27.
Berselli
,
G.
,
Mammano
,
G. S.
, and
Dragoni
,
E.
,
2014
, “
Design of a Dielectric Elastomer Cylindrical Actuator With Quasi-Constant Available Thrust: Modeling Procedure and Experimental Validation
,”
ASME J. Mech. Des.
,
136
(
12
), p.
125001
.
28.
Hau
,
S.
,
York
,
A.
, and
Seelecke
,
S.
,
2015
, “
Performance Prediction of Circular Dielectric Electro-Active Polymers Membrane Actuators With Various Geometries
,”
Proc. SPIE
,
9430
, p.
94300C
.
29.
Zakaria
,
S.
,
Morshuis
,
P. H. F.
,
Benslimane
,
M. Y.
,
Yu
,
L.
, and
Skov
,
A. L.
,
2015
, “
The Electrical Breakdown Strength of Pre-Stretched Elastomers, With and Without Sample Volume Conservation
,”
Smart Mater. Struct.
,
24
(
5
), p.
055009
.
30.
Wacker Chemie AG
, 2016, “
Neue Perspektiven und Innovative Anwendungen Mit Elastosil® Film Hauchdünne Siliconfolie
,” Wacker Chemie AG, Munich, Germany, accessed Feb. 19, 2016, http://www.wacker.com/cms/media/publications/downloads/7091_DE.pdf
31.
Fasolt
,
B.
,
Hodgins
,
M.
,
Rizzello
,
G.
, and
Seelecke
,
S.
,
2017
, “
Effect of Screen Printing Parameters on Sensor and Actuator Performance of Dielectric Elastomer (DE) Membranes
,”
Sens. Actuators A.
,
265
, pp. 10–19.
32.
Hau
,
S.
,
York
,
A.
, and
Seelecke
,
S.
,
2014
, “
Rapid Prototyping and Characterization of Circular Dielectric Electro-Active Polymers (DEAP) With Different Geometries
,”
ASME
Paper No. SMASIS2014-7477.
33.
Patra
,
K.
, and
Sahu
,
R. K.
,
2015
, “
A Visco-Hyperelastic Approach to Modelling Rate-Dependent Large Deformation of a Dielectric Acrylic Elastomer
,”
Int. J. Mech. Mater. Des.
,
11
(
1
), pp.
79
90
.
34.
He
,
T.
,
Cui
,
L.
,
Chen
,
C.
, and
Suo
,
Z.
,
2010
, “
Nonlinear Deformation Analysis of a Dielectric Elastomer Membrane–Spring System
,”
Smart Mater. Struct.
,
19
(
8
), p.
085017
.
35.
Tezduyar
,
T. E.
,
Wheeler
,
L. T.
, and
Graux
,
L.
,
1987
, “
Finite Deformation of a Circular Elastic Membrane Containing a Concentric Rigid Inclusion
,”
Int. J. Non. Linear. Mech.
,
22
(
1
), pp.
61
72
.
36.
Berselli
,
G.
,
Vassura
,
G.
,
Parenti-Castelli
,
V.
, and
Vertechy
,
R.
,
2010
, “
On Designing Compliant Actuators Based on Dielectric Elastomers for Robotic Applications
,”
Robot Manipulators New Achievements
,
A.
Lazinica
and
H.
Kawai
, eds.,
InTech
,
Rijeka, Croatia
, pp.
523
550
.
37.
Rizzello
,
G.
,
Hodgins
,
M.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2015
, “
Modeling of the Effects of the Electrical Dynamics on the Electromechanical Response of a DEAP Circular Actuator With a Mass–Spring Load
,”
Smart Mater. Struct.
,
24
(
9
), p.
094003
.
38.
He
,
T.
,
Zhao
,
X.
, and
Suo
,
Z.
,
2009
, “
Dielectric Elastomer Membranes Undergoing Inhomogeneous Deformation
,”
J. Appl. Phys.
,
106
(
8
), p.
083522
.
39.
Hodgins
,
M.
,
Rizzello
,
G.
,
Naso
,
D.
,
York
,
A.
, and
Seelecke
,
S.
,
2014
, “
An Electro-Mechanically Coupled Model for the Dynamic Behavior of a Dielectric Electro-Active Polymer Actuator
,”
Smart Mater. Struct.
,
23
(
10
), p.
104006
.
40.
Wang
,
H.
,
Zhu
,
J.
, and
Ye
,
K.
,
2009
, “
Simulation, Experimental Evaluation and Performance Improvement of a Cone Dielectric Elastomer Actuator
,”
J. Zhejiang Univ. Sci. A
,
10
(
9
), pp.
1296
1304
.
41.
Hodgins
,
M.
,
York
,
A.
, and
Seelecke
,
S.
,
2017
, “
Systematic Experimental Characterization of Dielectric Elastomer Membranes Using a Custom-Built Tensile Test Rig
,”
J. Intell. Mater. Syst. Struct.
,
28
(
15
), pp.
2117
2128
.
42.
Sheng
,
J.
,
Zhang
,
Y.
,
Liu
,
L.
,
Li
,
B.
, and
Chen
,
H.
,
2017
, “
Viscoelastic Performance of Dielectric Elastomer Subject to Different Voltage Stimulation
,”
Proc. SPIE
,
10163
, p. 1016329.
You do not currently have access to this content.