Many engineering applications utilize periodic lattice structures to take advantage of their favorable and tailorable mechanical properties. However, manufacturing the structures and evaluating their mechanical properties are still challenging. Additive manufacturing (AM) processes offer an alternative method to fabricate periodic lattice structures but the processes only approximate bounding part surfaces. Periodic lattice structures generally have two important geometrical characteristics, large bounding surfaces, and a large number of joints. Since geometric approximation errors on large bounding surfaces critically affect mechanical properties of the structures, designers and engineers should incorporate this degradation into mechanical property estimation procedures. In addition, the effects of joints should be analyzed in the estimation process, because joints reduce struts lengths, and as a result, they add stiffness to lattice structures. This paper presents a new homogenization approach to estimate mechanical properties of additively manufactured periodic lattice structures that is based on semirigid joint frame elements, and it takes into account effects of geometric approximation errors and joint stiffening. Effective structural parameters of a semirigid joint frame element are calculated from an as-fabricated voxel model to incorporate the geometric approximation errors. The semirigid joint frame element is integrated into a discrete homogenization process to evaluate joint stiffening effects. This paper reports results of parametric studies that investigate effects of AM process and joint properties on periodic lattice structures fabricated by material extrusion. This paper also compares estimates from the proposed approach and conventional homogenization approaches with test results. The comparison shows that the proposed method provides estimates that are more accurate.

References

References
1.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1982
, “
The Mechanics of Three-Dimensional Cellular Materials
,”
Proc. R. Soc. London. A. Math. Phys. Sci.
,
382
(
1782
), p.
43
.
2.
Ashby
,
M.
,
2011
, “
Hybrid Materials to Expand the Boundaries of Material-Property Space
,”
J. Am. Ceram. Soc.
,
94
, pp.
s3
s14
.
3.
Doyoyo
,
M.
, and
Hu
,
J. W.
,
2006
, “
Multi-Axial Failure of Metallic Strut-Lattice Materials Composed of Short and Slender Struts
,”
Int. J. Solids Struct.
,
43
(
20
), pp.
6115
6139
.
4.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
5.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media With Periodic Structure
,”
Comput. Struct.
,
69
(
6
), pp.
707
717
.
6.
Hassani
,
B.
, and
Hinton
,
E.
,
1998
, “
A Review of Homogenization and Topology Opimization—II: Analytical and Numerical Solution of Homogenization Equations
,”
Comput. Struct.
,
69
(
6
), pp.
719
738
.
7.
Arabnejad
,
S.
, and
Pasini
,
D.
,
2013
, “
Mechanical Properties of Lattice Materials Via Asymptotic Homogenization and Comparison With Alternative Homogenization Methods
,”
Int. J. Mech. Sci.
,
77
, pp.
249
262
.
8.
Tollenaere
,
H.
, and
Caillerie
,
D.
,
1998
, “
Continuous Modeling of Lattice Structures by Homogenization
,”
Adv. Eng. Software
,
29
(
7–9
), pp.
699
705
.
9.
Caillerie
,
D.
,
Mourad
,
A.
, and
Raoult
,
A.
,
2006
, “
Discrete Homogenization in Graphene Sheet Modeling
,”
J. Elasticity
,
84
(
1
), pp.
33
68
.
10.
Dos Reis
,
F.
, and
Ganghoffer
,
J.
,
2010
, “
Discrete Homogenization of Architectured Materials: Implementation of the Method in a Simulation Tool for the Systematic Prediction of Their Effective Elastic Properties
,”
Tech. Mech.
,
30
(
1–3
), pp.
85
109
.https://www.semanticscholar.org/paper/Discrete-homogenization-of-architectured-materials-Reis-Ganghoffer/4e80578da45989319dc9058be5187494262ac768
11.
Hutchinson
,
R. G.
, and
Fleck
,
N. A.
,
2006
, “
The Structural Performance of the Periodic Truss
,”
J. Mech. Phys. Solids
,
54
(
4
), pp.
756
782
.
12.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2012
, “
Linear Multiscale Analysis and Finite Element Validation of Stretching and Bending Dominated Lattice Materials
,”
Mech. Mater.
,
46
, pp.
57
68
.
13.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2012
, “
Stiffness and Strength of Tridimensional Periodic Lattices
,”
Comput. Methods Appl. Mech. Eng.
,
229–232
, pp.
27
43
.
14.
Vigliotti
,
A.
,
Deshpande
,
V. S.
, and
Pasini
,
D.
,
2014
, “
Non Linear Constitutive Models for Lattice Materials
,”
J. Mech. Phys. Solids
,
64
, pp.
44
60
.
15.
Ahn
,
D.
,
Kweon
,
J.-H.
,
Kwon
,
S.
,
Song
,
J.
, and
Lee
,
S.
,
2009
, “
Representation of Surface Roughness in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
209
(
15–16
), pp.
5593
5600
.
16.
Harrysson
,
O. L. A.
,
Cansizoglu
,
O.
,
Marcellin-Little
,
D. J.
,
Cormier
,
D. R.
, and
West
,
H. A.
,
2008
, “
Direct Metal Fabrication of Titanium Implants With Tailored Materials and Mechanical Properties Using Electron Beam Melting Technology
,”
Mater. Sci. Eng. C
,
28
(
3
), pp.
366
373
.
17.
Park
,
S.-I.
, and
Rosen
,
D. W.
,
2016
, “
Quantifying Effects of Material Extrusion Additive Manufacturing Process on Mechanical Properties of Lattice Structures Using as-Fabricated Voxel Modeling
,”
Addit. Manuf.
,
12
, pp.
265
273
.
18.
Alexander
,
K.
,
Andreas
,
B.
, and
Carolin
,
K.
,
2014
, “
Modelling of Electron Beam Absorption in Complex Geometries
,”
J. Phys. D: Appl. Phys.
,
47
(
6
), p.
065307
.
19.
Horn
,
T. J.
,
Harrysson
,
O. L. A.
,
Marcellin-Little
,
D. J.
,
West
,
H. A.
,
Lascelles
,
B. D. X.
, and
Aman
,
R.
,
2014
, “
Flexural Properties of Ti6Al4V Rhombic Dodecahedron Open Cellular Structures Fabricated With Electron Beam Melting
,”
Addit. Manuf.
,
1–4
, pp.
2
11
.
20.
Karamooz Ravari
,
M. R.
,
Kadkhodaei
,
M.
,
Badrossamay
,
M.
, and
Rezaei
,
R.
,
2014
, “
Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling
,”
Int. J. Mech. Sci.
,
88
, pp.
154
161
.
21.
Yang
,
L.
,
Harrysson
,
O.
,
Cormier
,
D.
,
West
,
H.
,
Gong
,
H.
, and
Stucker
,
B.
,
2015
, “
Additive Manufacturing of Metal Cellular Structures: Design and Fabrication
,”
JOM
,
67
(
3
), pp.
608
615
.
22.
Ravari
,
M. R. K.
,
Esfahani
,
S. N.
,
Andani
,
M. T.
,
Kadkhodaei
,
M.
,
Ghaei
,
A.
,
Karaca
,
H.
, and
Elahinia
,
M.
,
2016
, “
On the Effects of Geometry, Defects, and Material Asymmetry on the Mechanical Response of Shape Memory Alloy Cellular Lattice Structures
,”
Smart Mater. Struct.
,
25
(
2
), p.
025008
.
23.
Park
,
S.-I.
,
Rosen
,
D. W.
,
Choi
,
S.-K.
, and
Duty
,
C. E.
,
2014
, “
Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
1–4
, pp.
12
23
.
24.
Luxner
,
M. H.
,
Stampfl
,
J.
, and
Pettermann
,
H. E.
,
2007
, “
Numerical Simulations of 3D Open Cell Structures—Influence of Structural Irregularities on Elasto-Plasticity and Deformation Localization
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
2990
3003
.
25.
Park
,
S.-I.
, and
Rosen
,
D. W.
,
2015
, “
Quantifying Mechanical Property Degradation of Cellular Material Using as-Fabricated Voxel Modeling for the Material Extrusion Process
,”
The 26th Annual Solid Freeform Fabrication Symposium
(
SFFS
),
Austin
, TX, Aug. 10–12, pp. 1070–1091.http://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-89-Park.pdf
26.
Park
,
S.-I.
,
2016
, “
Estimating Mechanical Properties of Cellular Solid Materials From Additive Manufacturing Processes
,”
Doctoral dissertation
, Georgia Institute of Technology, Atlanta, GA.http://hdl.handle.net/1853/59124
27.
Frye
,
M. J.
, and
Morris
,
G. A.
,
1975
, “
Analysis of Flexibly Connected Steel Frames
,”
Can. J. Civ. Eng.
,
2
(
3
), pp.
280
291
.
28.
Sekulovic
,
M.
, and
Salatic
,
R.
,
2001
, “
Nonlinear Analysis of Frames With Flexible Connections
,”
Comput. Struct.
,
79
(
11
), pp.
1097
1107
.
29.
Sekulovic
,
M.
,
Salatic
,
R.
, and
Nefovska
,
M.
,
2002
, “
Dynamic Analysis of Steel Frames With Flexible Connections
,”
Comput. Struct.
,
80
(
11
), pp.
935
955
.
30.
Marques Filho
,
S. J. P. J.
, and
Horowitz
,
B.
,
2013
, “
Flexibility Modeling of Reinforced Concrete Concentric Frame Joints
,”
Rev. IBRACON De Estruturas e Materiais
,
6
(
3
), pp.
360
374
.
31.
Chiorean
,
C. G.
,
2013
, “
A Computer Method for Nonlinear Inelastic Analysis of 3D Composite Steel–Concrete Frame Structures
,”
Eng. Struct.
,
57
, pp.
125
152
.
32.
Cook
,
R. D.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
Wiley
, New York.
33.
Bazoune
,
A.
,
Khulief
,
Y. A.
, and
Stephen
,
N. G.
,
2003
, “
Shape Functions of Three-Dimensional Timoshenko Beam Element
,”
J. Sound Vib.
,
259
(
2
), pp.
473
480
.
34.
Penrose
,
R.
,
2008
, “
On Best Approximate Solutions of Linear Matrix Equations
,”
Math. Proc. Cambridge Philos. Soc.
,
52
(
01
), pp.
17
19
.
You do not currently have access to this content.