In this paper, the application of orthotropic material orientation optimization for controlling heat flow in electric car power trains is presented. The design process is applied to a case model, which conducts heat while storing heat-sensitive electronic components. The core of the case is designed using a low thermal conductivity material on order to focus the heat flow into the surface layer, which is designed using a high thermal conductivity material. Material orthotropy is achieved in the surface layer of the case by removing the material at points determined by the optimization analysis. For this purpose, an orthotropic material orientation optimization method was extended to calculate optimal material distribution. This is achieved by transforming the initially obtained optimal orientation vector field into a scalar field through the use of coupled time-dependent nonisotropic Helmholtz equations. Multiple parameters allow the control of the scalar field and therefore the control over material distribution in accordance to the optimal orientation. This allows the material distribution pattern to be scaled depending on the desired manufacturing method. The analysis method is applied to divert heat flow from a specific section of the model while focusing the heat flow to another section. The results are shown for a model with a 0.1 mm thick surface layer of copper and are compared to those results from several other materials and layer thicknesses. Finally, the manufactured design is presented.

References

1.
Suzuki
,
K.
,
1991
, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
93
(
3
), pp.
291
318
.
2.
Gea
,
H.
, and
Luo
,
J.
,
2004
, “
On the Stress-Based and Strain-Based Methods for Predicting Optimal Orientation of Orthotropic Materials
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
229
234
.
3.
Hyer
,
M. W.
, and
Lee
,
H. H.
,
1991
, “
The Use of Curvilinear Fiber Format to Improve Buckling Resistance of Composite Plates With Central Circular Holes
,”
Compos. Struct.
,
18
(
3
), pp.
239
261
.
4.
IJsselmuiden
,
S. T.
,
Abdalla
,
M. M.
, and
Gürdal
,
Z.
,
2010
, “
Thermomechanical Design Optimization of Variable Stiffness Composite Panels for Buckling
,”
J. Therm. Stresses
,
33
(
10
), pp.
977
992
.
5.
Peeters
,
D. M. J.
,
Hesse
,
S.
, and
Abdalla
,
M. M.
,
2015
, “
Stacking Sequence Optimisation of Variable Stiffness Laminates With Manufacturing Constraints
,”
Compos. Struct.
,
125
, pp.
596
604
.
6.
Li
,
Q.
,
Steven
,
G. P.
,
Querin
,
O. M.
, and
Xie
,
Y. M.
,
1990
, “
Shape and Topology Design for Heat Conduction by Evolutionary Structural Optimization
,”
Int. J. Heat Mass Transfer
,
42
(
17
), pp.
3361
3371
.
7.
Gersborg-Hansen
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
,”
Struct. Multidiscip. Optim.
,
31
(
4
), pp.
251
259
.
8.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
365
379
.
9.
Kruijf
,
N.
,
Zhou
,
S.
,
Li
,
Q.
, and
Mai
,
Y.-W.
,
2007
, “
Topological Design of Structures and Composite Materials With Multiobjectives
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7092
7109
.
10.
Dede
,
E. M.
,
2010
, “
Simulation and Optimization of Heat Flow Via Anisotropic Material Thermal Conductivity
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
510
515
.
11.
Nomura
,
T.
,
Dede
,
E. M.
,
Lee
,
J.
,
Yamasaki
,
S.
,
Matsumori
,
T.
,
Kawamoto
,
A.
, and
Kikuchi
,
N.
,
2015
, “
General Topology Optimization Method With Continuous and Discrete Orientation Design Using Isoparametric Projection
,”
Int. J. Numer. Methods Eng.
,
101
(
8
), pp.
571
605
.
12.
Petrovic
,
M.
,
Nomura
,
T.
,
Yamada
,
T.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2017
, “
Orthotropic Material Orientation Optimization Method in Composite Laminates
,”
Struct. Multidiscip. Optim.
,
57
(
2
), pp.
815
828
.
13.
Hiroshi
,
H.
, and
Minoru
,
T.
,
1986
, “
Equivalent Inclusion Method for Steady-State Heat Conduction in Composites
,”
Int. J. Eng. Sci.
,
24
(
7
), pp.
1159
1172
.
14.
Turing
,
A. M.
,
1952
, “
The Chemical Basis of Morphogenesis
,”
Philos. Trans. R. Soc. London Ser. B
,
237
(
641
)., pp.
37
72
.
15.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes–a New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
You do not currently have access to this content.