Significant research effort has been devoted to topology optimization (TO) of two- and three-dimensional structural elements subject to various design and loading criteria. While the field of TO has been tremendously successful over the years, literature focusing on the optimization of spatially varying elastic material properties in structures subject to multiple loading states is scarce. In this article, we contribute to the state of the art in material optimization by proposing a numerical regime for optimizing the distribution of the elastic modulus in structural elements subject to multiple loading conditions and design displacement criteria. Such displacement criteria (target displacement fields prescribed by the designer) may result from factors related to structural codes, occupant comfort, proximity of adjacent structures, etc. In this work, we utilize an inverse problem based framework for optimizing the elastic modulus distribution considering N target displacements and imposed forces. This approach is formulated in a straight-forward manner such that it may be applied in a broad suite of design problems with unique geometries, loading conditions, and displacement criteria. To test the approach, a suite of optimization problems are solved to demonstrate solutions considering N = 2 for different geometries and boundary conditions.

References

References
1.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2016
, “
Bridging Topology Optimization and Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
175
192
.
2.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscip. Optim.
,
49
(
1
), pp.
1
38
.
3.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
, Berlin.
4.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
5.
Zhou
,
M.
, and
Rozvany
,
G.
,
1991
, “
The Coc Algorithm, Part Ii: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
6.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
7.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Qi
,
H. J.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111402
.
8.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.
9.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.
10.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
11.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
12.
Blank
,
L.
,
Garcke
,
H.
,
Sarbu
,
L.
,
Srisupattarawanit
,
T.
,
Styles
,
V.
, and
Voigt
,
A.
,
2012
, “
Phase-Field Approaches to Structural Topology Optimization
,”
Constrained Optimization and Optimal Control for Partial Differential Equations
,
Springer
, Basel, Switzerland, pp.
245
256
.
13.
Dedè
,
L.
,
Borden
,
M. J.
, and
Hughes
,
T. J.
,
2012
, “
Isogeometric Analysis for Topology Optimization With a Phase Field Model
,”
Arch. Comput. Methods Eng.
,
19
(
3
), pp.
427
465
.
14.
Takezawa
,
A.
,
Nishiwaki
,
S.
, and
Kitamura
,
M.
,
2010
, “
Shape and Topology Optimization Based on the Phase Field Method and Sensitivity Analysis
,”
J. Comput. Phys.
,
229
(
7
), pp.
2697
2718
.
15.
Czarnecki
,
S.
, and
Lewiński
,
T.
,
2017
, “
On Material Design by the Optimal Choice of Young's Modulus Distribution
,”
Int. J. Solids Struct.
,
110
, pp.
315
331
.
16.
Ben-Tal
,
A.
,
Kocvara
,
M.
,
Nemirovski
,
A.
, and
Zowe
,
J.
,
1999
, “
Free Material Design via Semidefinite Programming: The Multiload Case With Contact Conditions
,”
SIAM J. Optim.
,
9
(
4
), pp.
813
832
.
17.
Zuo
,
W.
, and
Saitou
,
K.
,
2017
, “
Multi-Material Topology Optimization Using Ordered Simp Interpolation
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
477
491
.
18.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1267
1281
.
19.
Tavakoli
,
R.
,
2014
, “
Multimaterial Topology Optimization by Volume Constrained Allen–Cahn System and Regularized Projected Steepest Descent Method
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
534
565
.
20.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically-A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
21.
Ramani
,
A.
,
2011
, “
Multi-Material Topology Optimization With Strength Constraints
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
597
615
.
22.
Cramer
,
A. D.
,
Challis
,
V. J.
, and
Roberts
,
A. P.
,
2016
, “
Microstructure Interpolation for Macroscopic Design
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
489
500
.
23.
Bendsoe
,
M. P.
,
Guedes
,
J.
,
Haber
,
R. B.
,
Pedersen
,
P.
, and
Taylor
,
J.
,
1994
, “
An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
930
937
.
24.
Ringertz
,
U.
,
1993
, “
On Finding the Optimal Distribution of Material Properties
,”
Struct. Optim.
,
5
(
4
), pp.
265
267
.
25.
Maar
,
B.
, and
Schulz
,
V.
,
2000
, “
Interior Point Multigrid Methods for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
19
(
3
), pp.
214
224
.
26.
Kočvara
,
M.
,
Zibulevsky
,
M.
, and
Zowe
,
J.
,
1998
, “
Mechanical Design Problems With Unilateral Contact
,”
ESAIM: Math. Modell. Numer. Anal.
,
32
(
3
), pp.
255
281
.
27.
Zowe
,
J.
,
Kočvara
,
M.
, and
Bendsøe
,
M. P.
,
1997
, “
Free Material Optimization Via Mathematical Programming
,”
Math. Program.
,
79
(
1–3
), pp.
445
466
.
28.
Jarre
,
F.
,
Kočvara
,
M.
, and
Zowe
,
J.
,
1996
,
Interior Point Methods for Mechanical Design Problems
,
Universität Erlangen-Nürnberg. Institut für Angewandte Mathematik
, Nuremberg, Germany.
29.
Allaire
,
G.
,
Jouve
,
F.
, and
Maillot
,
H.
,
2004
, “
Topology Optimization for Minimum Stress Design With the Homogenization Method
,”
Struct. Multidiscip. Optim.
,
28
(
2–3
), pp.
87
98
.
30.
Pereira
,
J.
,
Fancello
,
E.
, and
Barcellos
,
C.
,
2004
, “
Topology Optimization of Continuum Structures With Material Failure Constraints
,”
Struct. Multidiscip. Optim.
,
26
(
1–2
), pp.
50
66
.
31.
Kočvara
,
M.
, and
Stingl
,
M.
,
2007
, “
Free Material Optimization for Stress Constraints
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
323
335
.
32.
Kočvara
,
M.
, and
Stingl
,
M.
,
2007
, “
On the Solution of Large-Scale Sdp Problems by the Modified Barrier Method Using Iterative Solvers
,”
Math. Program.
,
109
(
2–3
), pp.
413
444
.
33.
Stingl
,
M.
,
2006
,
On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian Methods
,
Shaker Aachen
, Nuremberg, Germany.
34.
Deng
,
S.
, and
Suresh
,
K.
,
2017
, “
Stress Constrained Thermo-Elastic Topology Optimization With Varying Temperature Fields via Augmented Topological Sensitivity Based Level-Set
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1413
1427
.
35.
Haslinger
,
J.
,
Kočvara
,
M.
,
Leugering
,
G.
, and
Stingl
,
M.
,
2010
, “
Multidisciplinary Free Material Optimization
,”
SIAM J. Appl. Math.
,
70
(
7
), pp.
2709
2728
.
36.
Picelli
,
R.
,
Townsend
,
S.
,
Brampton
,
C.
,
Norato
,
J.
, and
Kim
,
H.
,
2018
, “
Stress-Based Shape and Topology Optimization With the Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
329
, pp.
1
23
.
37.
Zhang
,
S.
,
Gain
,
A. L.
, and
Norato
,
J. A.
,
2017
, “
Stress-Based Topology Optimization With Discrete Geometric Components
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
1
21
.
38.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
605
620
.
39.
Czarnecki
,
S.
, and
Wawruch
,
P.
,
2015
, “
The Emergence of Auxetic Material as a Result of Optimal Isotropic Design
,”
Phys. Status Solidi (b)
,
252
(
7
), pp.
1620
1630
.
40.
Czubacki
,
R.
, and
Lewiński
,
T.
,
2015
, “
Topology Optimization of Spatial Continuum Structures Made of Non-Homogeneous Material of Cubic Symmetry
,”
J. Mech. Mater. Struct.
,
10
(
4
), pp.
519
535
.
41.
Brańka
,
A.
,
Heyes
,
D.
, and
Wojciechowski
,
K.
,
2009
, “
Auxeticity of Cubic Materials
,”
Phys. Status Solidi (b)
,
246
(
9
), pp.
2063
2071
.
42.
Brańka
,
A.
, and
Wojciechowski
,
K.
,
2008
, “
Auxeticity of Cubic Materials: The Role of Repulsive Core Interaction
,”
J. Non-Cryst. Solids
,
354
(
35–39
), pp.
4143
4145
.
43.
Coelho
,
P. G.
,
Cardoso
,
J. B.
,
Fernandes
,
P. R.
, and
Rodrigues
,
H. C.
,
2011
, “
Parallel Computing Techniques Applied to the Simultaneous Design of Structure and Material
,”
Adv. Eng. Software
,
42
(
5
), pp.
219
227
.
44.
Liu
,
L.
,
Yan
,
J.
, and
Cheng
,
G.
,
2008
, “
Optimum Structure With Homogeneous Optimum Truss-like Material
,”
Comput. Struct.
,
86
(
13–14
), pp.
1417
1425
.
45.
Cheng
,
G.
,
Liu
,
L.
, and
Yan
,
J.
,
2006
, “
Optimum Structure With Homogeneous Optimum Truss-like Material
,”
III European Conference on Computational Mechanics
, Lisbon, Portugal, June 5–8, pp.
481
481
.
46.
Gosselin
,
C.
,
Duballet
,
R.
,
Roux
,
P.
,
Gaudillière
,
N.
,
Dirrenberger
,
J.
, and
Morel
,
P.
,
2016
, “
Large-Scale 3D Printing of Ultra-High Performance Concrete—A New Processing Route for Architects and Builders
,”
Mater. Des.
,
100
, pp.
102
109
.
47.
Feng
,
P.
,
Meng
,
X.
,
Chen
,
J.-F.
, and
Ye
,
L.
,
2015
, “
Mechanical Properties of Structures 3D Printed With Cementitious Powders
,”
Constr. Build. Mater.
,
93
, pp.
486
497
.
48.
Radman
,
A.
,
Huang
,
X.
, and
Xie
,
Y.
,
2013
, “
Topology Optimization of Functionally Graded Cellular Materials
,”
J. Mater. Sci.
,
48
(
4
), pp.
1503
1510
.
49.
Liu
,
W.
, and
DuPont
,
J.
,
2003
, “
Fabrication of Functionally Graded Tic/Ti Composites by Laser Engineered Net Shaping
,”
Scr. Mater.
,
48
(
9
), pp.
1337
1342
.
50.
Wang
,
X.
,
Xu
,
S.
,
Zhou
,
S.
,
Xu
,
W.
,
Leary
,
M.
,
Choong
,
P.
,
Qian
,
M.
,
Brandt
,
M.
, and
Xie
,
Y. M.
,
2016
, “
Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review
,”
Biomaterials
,
83
, pp.
127
141
.
51.
Hollister
,
S. J.
,
2005
, “
Porous Scaffold Design for Tissue Engineering
,”
Nat. Mater.
,
4
(
7
), p.
518
.
52.
Evgrafov
,
A.
,
2005
, “
The Limits of Porous Materials in the Topology Optimization of Stokes Flows
,”
Appl. Math. Optim.
,
52
(
3
), pp.
263
277
.
53.
Yaji
,
K.
,
Yamada
,
T.
,
Kubo
,
S.
,
Izui
,
K.
, and
Nishiwaki
,
S.
,
2015
, “
A Topology Optimization Method for a Coupled Thermal–Fluid Problem Using Level Set Boundary Expressions
,”
Int. J. Heat Mass Transfer
,
81
, pp.
878
888
.
54.
Garcke
,
H.
,
Hecht
,
C.
,
Hinze
,
M.
, and
Kahle
,
C.
,
2015
, “
Numerical Approximation of Phase Field Based Shape and Topology Optimization for Fluids
,”
SIAM J. Sci. Comput.
,
37
(
4
), pp.
A1846
A1871
.
55.
Guest
,
J. K.
, and
Prévost
,
J. H.
,
2006
, “
Topology Optimization of Creeping Fluid Flows Using a Darcy–Stokes Finite Element
,”
Int. J. Numer. Methods Eng.
,
66
(
3
), pp.
461
484
.
56.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluids
,
41
(
1
), pp.
77
107
.
57.
Pizzolato
,
A.
,
Sharma
,
A.
,
Maute
,
K.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2017
, “
Topology Optimization for Heat Transfer Enhancement in Latent Heat Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
113
, pp.
875
888
.
58.
Jing
,
G.
,
Isakari
,
H.
,
Matsumoto
,
T.
,
Yamada
,
T.
, and
Takahashi
,
T.
,
2015
, “
Level Set-Based Topology Optimization for 2D Heat Conduction Problems Using Bem With Objective Function Defined on Design-Dependent Boundary With Heat Transfer Boundary Condition
,”
Eng. Anal. Boundary Elem.
,
61
, pp.
61
70
.
59.
Gersborg-Hansen
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
,”
Struct. Multidiscip. Optim.
,
31
(
4
), pp.
251
259
.
60.
Deng
,
S.
, and
Suresh
,
K.
,
2017
, “
Topology Optimization Under Thermo-Elastic Buckling
,”
Struct. Multidiscip. Optim.
,
55
(
5
), pp.
1759
1772
.
61.
Deng
,
S.
, and
Suresh
,
K.
,
2016
, “
Multi-Constrained 3D Topology Optimization Via Augmented Topological Level-Set
,”
Comput. Struct.
,
170
, pp.
1
12
.
62.
Deng
,
S.
, and
Suresh
,
K.
,
2015
, “
Multi-Constrained Topology Optimization Via the Topological Sensitivity
,”
Struct. Multidiscip. Optim.
,
51
(
5
), pp.
987
1001
.
63.
Sokół
,
T.
, and
Rozvany
,
G.
,
2013
, “
On the Adaptive Ground Structure Approach for Multi-Load Truss Topology Optimization
,”
Tenth World Congress on Structural and Multidisciplinary Optimization
, Orlando, FL, May 20–24, pp.
19
24
.
64.
Alvarez
,
F.
, and
Carrasco
,
M.
,
2005
, “
Minimization of the Expected Compliance as an Alternative Approach to Multiload Truss Optimization
,”
Struct. Multidiscip. Optim.
,
29
(
6
), pp.
470
476
.
65.
Guedes
,
J. M.
,
Rodrigues
,
H. C.
, and
Bendsøe
,
M. P.
,
2003
, “
A Material Optimization Model to Approximate Energy Bounds for Cellular Materials Under Multiload Conditions
,”
Struct. Multidiscip. Optim.
,
25
(
5–6
), pp.
446
452
.
66.
Oberai
,
A. A.
,
Gokhale
,
N. H.
,
Doyley
,
M. M.
, and
Bamber
,
J. C.
,
2004
, “
Evaluation of the Adjoint Equation Based Algorithm for Elasticity Imaging
,”
Phys. Med. Biol.
,
49
(
13
), p.
2955
.
67.
Tikhonov
,
A. N.
, and
Glasko
,
V. B.
,
1965
, “
Use of the Regularization Method in Non-Linear Problems
,”
USSR Comput. Math. Math. Phys.
,
5
(
3
), pp.
93
107
.
68.
Vauhkonen
,
M.
,
Vadasz
,
D.
,
Karjalainen
,
P. A.
,
Somersalo
,
E.
, and
Kaipio
,
J. P.
,
1998
, “
Tikhonov Regularization and Prior Information in Electrical Impedance Tomography
,”
IEEE Trans. Med. Imaging
,
17
(
2
), pp.
285
293
.
69.
Mueller
,
J. L.
, and
Siltanen
,
S.
,
2012
,
Linear and Nonlinear Inverse Problems With Practical Applications
,
Society of Indian Automobile Manufactures
, Auckland, NZ.
70.
Kaipio
,
J.
, and
Somersalo
,
E.
,
2006
,
Statistical and Computational Inverse Problems
, Vol.
160
,
Springer Science & Business Media
, New York.
71.
Surana
,
K. S.
, and
Reddy
,
J.
,
2016
,
The Finite Element Method for Boundary Value Problems: Mathematics and Computations
,
CRC Press
, Boca Raton, FL.
72.
Kim
,
S.-J.
,
Koh
,
K.
,
Lustig
,
M.
,
Boyd
,
S.
, and
Gorinevsky
,
D.
,
2007
, “
An Interior-Point Method for Large-Scale l1-Regularized Least Squares
,”
IEEE J. Sel. Topics Signal Process.
,
1
(
4
), pp.
606
617
.
73.
Vauhkonen
,
M.
,
1997
, “
Electrical Impedance Tomography and Prior Information
,” PhD Thesis, University of Kuopio, Kuopio, Finland.
74.
An
,
H.-B.
,
Wen
,
J.
, and
Feng
,
T.
,
2011
, “
On Finite Difference Approximation of a Matrix-Vector Product in the Jacobian-Free Newton-Krylov Method
,”
J. Comput. Appl. Math.
,
236
(
6
), pp.
1399
1409
.
75.
Smyl
,
D.
,
Bossuyt
,
S.
, and
Liu
,
D.
, Submitted,
2018
, “
Stacked Elasticity Imaging Approach for Visualizing Defects in the Presence of Background Inhomogeneity
,”
J. Eng. Mech.
, (accepted).
76.
Liu
,
D.
,
Kolehmainen
,
V.
,
Siltanen
,
S.
,
Laukkanen
,
A.
, and
Seppänen
,
A.
,
2015
, “
Estimation of Conductivity Changes in a Region of Interest With Electrical Impedance Tomography
,”
Inverse Probl. Imaging
,
9
(
1
), pp.
211
229
.
You do not currently have access to this content.