Integrated Computational Materials Engineering (ICME) calls for the integration of computational tools into the materials and parts development cycle, while the Materials Genome Initiative (MGI) calls for the acceleration of the materials development cycle through the combination of experiments, simulation, and data. As they stand, both ICME and MGI do not prescribe how to achieve the necessary tool integration or how to efficiently exploit the computational tools, in combination with experiments, to accelerate the development of new materials and materials systems. This paper addresses the first issue by putting forward a framework for the fusion of information that exploits correlations among sources/models and between the sources and “ground truth.” The second issue is addressed through a multi-information source optimization framework that identifies, given current knowledge, the next best information source to query and where in the input space to query it via a novel value-gradient policy. The querying decision takes into account the ability to learn correlations between information sources, the resource cost of querying an information source, and what a query is expected to provide in terms of improvement over the current state. The framework is demonstrated on the optimization of a dual-phase steel to maximize its strength-normalized strain hardening rate. The ground truth is represented by a microstructure-based finite element model while three low fidelity information sources—i.e., reduced order models—based on different homogenization assumptions—isostrain, isostress, and isowork—are used to efficiently and optimally query the materials design space.

References

References
1.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
(
5330
), pp.
1237
1242
.
2.
Olson
,
G. B.
,
2000
, “
Designing a New Material World
,”
Science
,
288
(
5468
), pp.
993
998
.
3.
Allison
,
J.
,
2011
, “
Integrated Computational Materials Engineering: A Perspective on Progress and Future Steps
,”
JOM
,
63
(
4
), pp.
15
18
.
4.
National Research Council
,
2008
,
Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security
,
National Academies Press
, Washington, DC.
5.
Holdren
,
J. P.
, and
National Science and Technology Council
,
2011
, “
Materials Genome Initiative for Global Competitiveness
,” National Science and Technology Council/OSTP, Washington, DC.
6.
Madison
,
J. D.
,
2016
, “
Integrated Computational Materials Engineering: Tools, Simulations and New Applications
,”
JOM
,
68
(
5
), pp.
1376
1377
.
7.
Agrawal
,
A.
, and
Choudhary
,
A.
,
2016
, “
Perspective: Materials Informatics and Big Data: Realization of the Fourth Paradigm of Science in Materials Science
,”
APL Mater.
,
4
(
5
), p.
053208
.
8.
Kalidindi
,
S. R.
, and
De Graef
,
M.
,
2015
, “
Materials Data Science: Current Status and Future Outlook
,”
Annu. Rev. Mater. Res.
,
45
(
1
), pp.
171
193
.
9.
The Minerals Metals & Materials Society (TMS)
,
2015
,
Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales
,
The Minerals Metals & Materials Society
,
Warrendale, PA
.
10.
Reddy
,
S.
,
Gautham
,
B.
,
Das
,
P.
,
Yeddula
,
R. R.
,
Vale
,
S.
, and
Malhotra
,
C.
,
2017
, “
An Ontological Framework for Integrated Computational Materials Engineering
,” Fourth World Congress on Integrated Computational Materials Engineering (ICME)
, pp.
69
77
.
11.
Savic
,
V.
,
Hector
,
L.
,
Basu
,
U.
,
Basudhar
,
A.
,
Gandikota
,
I.
,
Stander
,
N.
,
Park
,
T.
,
Pourboghrat
,
F.
,
Sil Choi
,
K. S.
,
Sun
,
X.
,
Hu
,
J.
,
Abu-Farha
,
F.
, and
Kumar
,
S.
,
2017
, “
Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels
,”
SAE
Paper No. 2017-01-0226.
12.
Diehl
,
M.
,
Groeber
,
M.
,
Haase
,
C.
,
Molodov
,
D. A.
,
Roters
,
F.
, and
Raabe
,
D.
,
2017
, “
Identifying Structure–Property Relationships Through Dream. 3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach
,”
JOM
,
69
(
5
), pp.
848
855
.
13.
Bessa
,
M.
,
Bostanabad
,
R.
,
Liu
,
Z.
,
Hu
,
A.
,
Apley
,
D. W.
,
Brinson
,
C.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2017
, “
A Framework for Data-Driven Analysis of Materials Under Uncertainty: Countering the Curse of Dimensionality
,”
Comput. Methods Appl. Mech. Eng.
,
320
, pp.
633
667
.
14.
Potyrailo
,
R.
,
Rajan
,
K.
,
Stoewe
,
K.
,
Takeuchi
,
I.
,
Chisholm
,
B.
, and
Lam
,
H.
,
2011
, “
Combinatorial and High-Throughput Screening of Materials Libraries: Review of State of the Art
,”
ACS Comb. Sci.
,
13
(
6
), pp.
579
633
.
15.
Suram
,
S. K.
,
Haber
,
J. A.
,
Jin
,
J.
, and
Gregoire
,
J. M.
,
2015
, “
Generating Information-Rich High-Throughput Experimental Materials Genomes Using Functional Clustering Via Multitree Genetic Programming and Information Theory
,”
ACS Comb. Sci.
,
17
(
4
), pp.
224
233
.
16.
Green
,
M. L.
,
Choi
,
C.
,
Hattrick-Simpers
,
J. R.
,
Joshi
,
A. M.
,
Takeuchi
,
I.
,
Barron
,
S. C.
,
Campo
,
E.
,
Chiang
,
T.
,
Empedocles
,
S.
,
Gregoire
,
J. M.
,
Kusne
,
A. G.
,
Martin
,
J.
,
Mehta
,
A.
,
Persson
,
K.
,
Trautt
,
Z.
,
Van Duren
,
J.
, and
Zakutayev
,
A.
,
2017
, “
Fulfilling the Promise of the Materials Genome Initiative With High-Throughput Experimental Methodologies
,”
Appl. Phys. Rev.
,
4
(
1
), p.
011105
.
17.
Curtarolo
,
S.
,
Hart
,
G. L.
,
Nardelli
,
M. B.
,
Mingo
,
N.
,
Sanvito
,
S.
, and
Levy
,
O.
,
2013
, “
The High-Throughput Highway to Computational Materials Design
,”
Nat. Mater.
,
12
(
3
), pp.
191
201
.
18.
Balachandran
,
P. V.
,
Xue
,
D.
,
Theiler
,
J.
,
Hogden
,
J.
, and
Lookman
,
T.
,
2016
, “
Adaptive Strategies for Materials Design Using Uncertainties
,”
Sci. Rep.
,
6
(
1
), p. 19660.
19.
Talapatra
,
A.
,
Boluki
,
S.
,
Duong
,
T.
,
Qian
,
X.
,
Dougherty
,
E.
, and
Arroyave
,
R.
,
2018
, “
Towards an Autonomous Efficient Materials Discovery Framework: An Example of Optimal Experiment Design Under Model Uncertainty
,” e-print arXiv:1803.05460.
20.
Ling
,
J. M.
,
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J.
,
2006
, “
Managing the Collection of Information Under Uncertainty Using Information Economics
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
980
990
.
21.
Chen
,
S.
,
Jiang
,
Z.
,
Yang
,
S.
, and
Chen
,
W.
,
2016
, “
Multimodel Fusion Based Sequential Optimization
,”
AIAA J.
,
55
(
1
), pp.
241
254
.
22.
Lam
,
R.
,
Allaire
,
D. L.
, and
Willcox
,
K. E.
,
2015
, “
Multifidelity Optimization Using Statistical Surrogate Modeling for Non-Hierarchical Information Sources
,”
AIAA
Paper No. AIAA 2015-0143
.
23.
Allaire
,
D.
, and
Willcox
,
K.
,
2014
, “
A Mathematical and Computational Framework for Multifidelity Design and Analysis With Computer Models
,”
Int. J. Uncertainty Quantif.
,
4
(
1
), pp. 1–20.
24.
Bhattacharya
,
D.
,
2011
, “
Metallurgical Perspectives on Advanced Sheet Steels for Automotive Applications
,”
Advanced Steels
,
Springer
, Berlin, Heidelberg, pp.
163
175
.
25.
Rashid
,
M.
,
1981
, “
Dual Phase Steels
,”
Annu. Rev. Mater. Sci.
,
11
(
1
), pp.
245
266
.
26.
Chen
,
P.
,
Ghassemi-Armaki
,
H.
,
Kumar
,
S.
,
Bower
,
A.
,
Bhat
,
S.
, and
Sadagopan
,
S.
,
2014
, “
Microscale-Calibrated Modeling of the Deformation Response of Dual-Phase Steels
,”
Acta Mater.
,
65
, pp.
133
149
.
27.
Srivastava
,
A.
,
Bower
,
A.
,
Hector
,
L.
, Jr.
,
Carsley
,
J.
,
Zhang
,
L.
, and
Abu-Farha
,
F.
,
2016
, “
A Multiscale Approach to Modeling Formability of Dual-Phase Steels
,”
Modell. Simul. Mater. Sci. Eng.
,
24
(
2
), p.
025011
.
28.
Voigt
,
W.
,
1889
, “
On the Relation Between the Elasticity Constants of Isotropic Bodies
,”
Ann. Phys. Chem.
,
274
, pp.
573
587
.
29.
Reuss
,
A.
,
1929
, “
Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle
,”
ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Mech.
,
9
(
1
), pp.
49
58
.
30.
Bouaziz
,
O.
, and
Buessler
,
P.
,
2002
, “
Mechanical Behaviour of Multiphase Materials: An Intermediate Mixture Law Without Fitting Parameter
,”
Rev. Métall.
,
99
(
1
), pp.
71
77
.
31.
Gerbig
,
D.
,
Srivastava
,
A.
,
Osovski
,
S.
,
Hector
,
L. G.
, and
Bower
,
A.
,
2018
, “
Analysis and Design of Dual-Phase Steel Microstructure for Enhanced Ductile Fracture Resistance
,”
Int. J. Fract.
,
209
(
1–2
), pp.
3
26
, pp.
1
24
.
32.
Abaqus, 2010, “ABAQUS Analysis User's Manual: version 6.10,” Dassault Systems, Vélizy-Villacoublay, France.
33.
Nemat-Nasser
,
S.
, and
Hori
,
M.
,
2013
,
Micromechanics: Overall Properties of Heterogeneous Materials
, Vol.
37
,
Elsevier
, Amsterdam, The Netherlands.
34.
Scott
,
W.
,
Frazier
,
P.
, and
Powell
,
W.
,
2011
, “
The Correlated Knowledge Gradient for Simulation Optimization of Continuous Parameters Using Gaussian Process Regression
,”
SIAM J. Optim.
,
21
(
3
), pp.
996
1026
.
35.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
36.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Miller
,
R. A.
,
2006
, “
Sequential Kriging Optimization Using Multiple-Fidelity Evaluations
,”
Struct. Multidiscip. Optim.
,
32
(
5
), pp.
369
382
.
37.
Moore
,
R. A.
,
Romero
,
D. A.
, and
Paredis
,
C. J.
,
2014
, “
Value-Based Global Optimization
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041003
.
38.
Frazier
,
P. I.
,
Powell
,
W. B.
, and
Dayanik
,
S.
,
2008
, “
A Knowledge-Gradient Policy for Sequential Information Collection
,”
SIAM J. Control Optim.
,
47
(
5
), pp.
2410
2439
.
39.
Gupta
,
S. S.
, and
Miescke
,
K. J.
,
1994
, “
Bayesian Look Ahead One Stage Sampling Allocations for Selecting the Largest Normal Mean
,”
Stat. Pap.
,
35
(
1
), pp.
169
177
.
40.
Gupta
,
S. S.
, and
Miescke
,
K. J.
,
1996
, “
Bayesian Look Ahead One-Stage Sampling Allocations for Selection of the Best Population
,”
J. Stat. Plann. Inference
,
54
(
2
), pp.
229
244
.
41.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
The MIT Press
, Cambridge, MA.
42.
Schonlau
,
M.
,
Welch
,
W. J.
, and
Jones
,
D.
,
1996
, “
Global Optimization With Nonparametric Function Fitting
,”
ASA, Section on Physical and Engineering Sciences
, pp.
183
186
.
43.
Schonlau
,
M.
,
Welch
,
W. J.
, and
Jones
,
D. R.
,
1998
, “
Global Versus Local Search in Constrained Optimization of Computer Models
,”
New Developments and Applications in Experimental Design
(Lecture Notes in Monograph Series, Vol. 34), pp.
11
25
.
44.
Alexandrov
,
N.
,
Lewis
,
R.
,
Gumbert
,
C.
,
Green
,
L.
, and
Newman
,
P.
,
1999
, “
Optimization With Variable-Fidelity Models Applied to Wing Design
,” National Aeronautics and Space Administration, Hampton, VA, Report No.
CR-209826
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.3385&rep=rep1&type=pdf.
45.
Alexandrov
,
N.
,
Lewis
,
R.
,
Gumbert
,
C.
,
Green
,
L.
, and
Newman
,
P.
,
2001
, “
Approximation and Model Management in Aerodynamic Optimization With Variable-Fidelity Models
,”
AIAA J.
,
38
(
6
), pp.
1093
1101
.
46.
Balabanov
,
V.
,
Haftka
,
R.
,
Grossman
,
B.
,
Mason
,
W.
, and
Watson
,
L.
,
1998
, “
Multifidelity Response Surface Model for HSCT Wing Bending Material Weight
,”
AIAA
Paper No. AIAA 1998-4804
.
47.
Balabanov
,
V.
, and
Venter
,
G.
,
2004
, “
Multi-Fidelity Optimization With High-Fidelity Analysis and Low-Fidelity Gradients
,”
AIAA
Paper No. AIAA 2004-4459
.
48.
Qian
,
P. Z.
, and
Wu
,
C. J.
,
2008
, “
Bayesian Hierarchical Modeling for Integrating Low-Accuracy and High-Accuracy Experiments
,”
Technometrics
,
50
(
2
), pp.
192
204
.
49.
Choi
,
S.
,
Alonso
,
J. J.
, and
Kroo
,
I. M.
,
2009
, “
Two-Level Multifidelity Design Optimization Studies for Supersonic Jets
,”
J. Aircr.
,
46
(
3
), pp.
776
790
.
50.
Eldred
,
M.
,
Giunta
,
A.
, and
Collis
,
S.
,
2004
, “
Second-Order Corrections for Surrogate-Based Optimization With Model Hierarchies
,”
AIAA
Paper No. AIAA 2004-4457
.
51.
March
,
A.
, and
Willcox
,
K.
,
2012
, “
Provably Convergent Multifidelity Optimization Algorithm Not Requiring High-Fidelity Derivatives
,”
AIAA J.
,
50
(
5
), pp.
1079
1089
.
52.
March
,
A.
, and
Willcox
,
K.
,
2012
, “
Convergent Multifidelity Optimization Using Bayesian Model Calibration
,”
Struct. Multidiscip. Optim.
,
46
(
1
), pp.
93
109
.
53.
Leamer
,
E.
,
1978
,
Specification Searches: Ad Hoc Inference With Nonexperimental Data
,
Wiley
,
New York
.
54.
Madigan
,
D.
, and
Raftery
,
A.
,
1994
, “
Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window
,”
Am. Stat. Assoc.
,
89
(
428
), pp.
1535
1546
.
55.
Draper
,
D.
,
1995
, “
Assessment and Propagation of Model Uncertainty
,”
J. R. Stat. Soc. Ser. B
,
57
(
1
), pp.
45
97
https://www.jstor.org/stable/2346087.
56.
Hoeting
,
J.
,
Madigan
,
D.
,
Raftery
,
A.
, and
Volinsky
,
C.
,
1999
, “
Bayesian Model Averaging: A Tutorial
,”
Stat. Sci.
,
14
(
4
), pp.
382
417
https://www.jstor.org/stable/2676803.
57.
Clyde
,
M.
,
2003
, “
Model Averaging
,”
In Subjective and Objective Bayesian Statistics
,
2nd ed.
,
Wiley-Interscience
, Hoboken, NJ, Chap. 13.
58.
Clyde
,
M.
, and
George
,
E.
,
2004
, “
Model Uncertainty
,”
Stat. Sci.
,
19
(
1
), pp.
81
94
.
59.
Mosleh
,
A.
, and
Apostolakis
,
G.
,
1986
, “
The Assessment of Probability Distributions From Expert Opinions With an Application to Seismic Fragility Curves
,”
Risk Anal.
,
6
(
4
), pp.
447
461
.
60.
Zio
,
E.
, and
Apostolakis
,
G.
,
1996
, “
Two Methods for the Structured Assessment of Model Uncertainty by Experts in Performance Assessments of Radioactive Waste Repositories
,”
Reliab. Eng. Syst. Saf.
,
54
(
2–3
), pp.
225
241
.
61.
Reinert
,
J.
, and
Apostolakis
,
G.
,
2006
, “
Including Model Uncertainty in Risk-Informed Decision Making
,”
Ann. Nucl. Energy
,
33
(
4
), pp.
354
369
.
62.
Riley
,
M.
, and
Grandhi
,
R.
,
2011
, “
Quantification of Modeling Uncertainty in Aeroelastic Analyses
,”
J. Aircr.
,
48
(
3
), pp.
866
873
.
63.
Julier
,
S.
, and
Uhlmann
,
J.
,
1997
, “
A Non-Divergent Estimation Algorithm in the Presence of Unknown Correlations
,”
American Control Conference
, Albuquerque, NM, June 6, pp.
2369
2373
.
64.
Julier
,
S.
, and
Uhlmann
,
J.
,
2001
, “
General Decentralized Data Fusion With Covariance Intersection
,”
Handbook of Data Fusion
,
D.
Hall
, and
J.
Llinas
, ed.,
CRC Press
,
Boca Raton, FL
.
65.
Geisser
,
S.
,
1965
, “
A Bayes Approach for Combining Correlated Estimates
,”
J. Am. Stat. Assoc.
,
60
(
310
), pp.
602
607
.
66.
Morris
,
P.
,
1977
, “
Combining Expert Judgments: A Bayesian Approach
,”
Manage. Sci.
,
23
(
7
), pp.
679
693
.
67.
Winkler
,
R.
,
1981
, “
Combining Probability Distributions From Dependent Information Sources
,”
Manage. Sci.
,
27
(
4
), pp.
479
488
.
68.
Panchal
,
J. H.
,
Paredis
,
C. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
A Value-of-Information Based Approach to Simulation Model Refinement
,”
Eng. Optim.
,
40
(
3
), pp.
223
251
.
69.
Messer
,
M.
,
Panchal
,
J. H.
,
Krishnamurthy
,
V.
,
Klein
,
B.
,
Yoder
,
P. D.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2010
, “
Model Selection Under Limited Information Using a Value-of-Information-Based Indicator
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121008
.
70.
Allaire
,
D.
, and
Willcox
,
K.
,
2012
, “
Fusing Information From Multifidelity Computer Models of Physical Systems
,”
15th International Conference on Information Fusion (FUSION),
Singapore, July 9–12, pp.
2458
2465
.
71.
Thomison
,
W. D.
, and
Allaire
,
D. L.
,
2017
, “
A Model Reification Approach to Fusing Information From Multifidelity Information Sources
,”
AIAA
Paper No. AIAA 2017-1949
.
72.
Powell
,
W. B.
, and
Ryzhov
,
I. O.
,
2012
,
Optimal Learning
, Vol.
841
,
Wiley
, Hoboken, NJ.
73.
Frazier
,
P.
,
Powell
,
W.
, and
Dayanik
,
S.
,
2009
, “
The Knowledge-Gradient Policy for Correlated Normal Beliefs
,”
INFORMS J. Comput.
,
21
(
4
), pp.
599
613
.
You do not currently have access to this content.