A great deal of engineering effort is focused on changing mechanical material properties by creating microstructural architectures instead of modifying chemical composition. This results in meta-materials, which can exhibit properties not found in natural materials and can be tuned to the needs of the user. To change Poisson's ratio and Young's modulus, many current designs exploit mechanisms and hinges to obtain the desired behavior. However, this can lead to nonlinear material properties and anisotropy, especially for large strains. In this work, we propose a new material design that makes use of curved leaf springs in a planar lattice. First, analytical ideal springs are employed to establish sufficient conditions for linear elasticity, isotropy, and a zero Poisson's ratio. Additionally, Young's modulus is directly related to the spring stiffness. Second, a design method from the literature is employed to obtain a spring, closely matching the desired properties. Next, numerical simulations of larger lattices show that the expectations hold, and a feasible material design is presented with an in-plane Young's modulus error of only 2% and Poisson's ratio of 2.78×103. These properties are isotropic and linear up to compressive and tensile strains of 0.12. The manufacturability and validity of the numerical model is shown by a prototype.

References

References
1.
Lee
,
J.-H.
,
Singer
,
J. P.
, and
Thomas
,
E. L.
,
2012
, “
Micro-/Nanostructured Mechanical Metamaterials
,”
Adv. Mater.
,
24
(
36
), pp.
4782
4810
.
2.
Zadpoor
,
A. A.
,
2016
, “
Mechanical Meta-Materials
,”
Mater. Horiz.
,
3
(
5
), pp.
371
381
.
3.
Lakes
,
R. S.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
4.
Lakes
,
R. S.
,
1993
, “
Design Considerations for Materials With Negative Poisson's Ratios
,”
ASME J. Mech. Des.
,
115
(
4
), p.
696
.
5.
Milton
,
G. W.
, and
Cherkaev
,
A. V.
,
1995
, “
Which Elasticity Tensors are Realizable?
,”
ASME J. Eng. Mater. Technol.
,
117
(
4
), p.
483
.
6.
Grima
,
J. N.
, and
Evans
,
K. E.
,
2000
, “
Auxetic Behavior From Rotating Squares
,”
J. Mater. Sci. Lett.
,
19
(
17
), pp.
1563
1565
.
7.
Milton
,
G. W.
,
2013
, “
Complete Characterization of the Macroscopic Deformations of Periodic Unimode Metamaterials of Rigid Bars and Pivots
,”
J. Mech. Phys. Solids
,
61
(
7
), pp.
1543
1560
.
8.
Bu¨ckmann
,
T.
,
Schittny
,
R.
,
Thiel
,
M.
,
Kadic
,
M.
,
Milton
,
G. W.
, and
Wegener
,
M.
,
2014
, “
On Three-Dimensional Dilational Elastic Metamaterials
,”
New J. Phys.
,
16
(
3
), p.
33032
.
9.
Kadic
,
M.
,
Bückmann
,
T.
,
Stenger
,
N.
,
Thiel
,
M.
, and
Wegener
,
M.
,
2012
, “
On the Practicability of Pentamode Mechanical Metamaterials
,”
Appl. Phys. Lett.
,
100
(
19
), p.
191901
.
10.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson's Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
.
11.
Overvelde
,
J. T. B.
,
Shan
,
S.
, and
Bertoldi
,
K.
,
2012
, “
Compaction Through Buckling in 2D Periodic, Soft and Porous Structures: Effect of Pore Shape
,”
Adv. Mater.
,
24
(
17
), pp.
2337
2342
.
12.
Florijn
,
B.
,
Coulais
,
C.
, and
van Hecke
,
M.
,
2014
, “
Programmable Mechanical Metamaterials
,”
Phys. Rev. Lett.
,
113
(
17
), p.
175503
.
13.
Shan
,
S.
,
Kang
,
S. H.
,
Wang
,
P.
,
Qu
,
C.
,
Shian
,
S.
,
Chen
,
E. R.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Multiple Folding Mechanisms in Soft Periodic Structures for Tunable Control of Elastic Waves
,”
Adv. Funct. Mater.
,
24
(
31
), pp.
4935
4942
.
14.
Shan
,
S.
,
Kang
,
S. H.
,
Zhao
,
Z.
,
Fang
,
L.
, and
Bertoldi
,
K.
,
2015
, “
Design of Planar Isotropic Negative Poisson's Ratio Structures
,”
Extreme Mech. Lett.
,
4
, pp.
96
102
.
15.
Grima
,
J. N.
,
Mizzi
,
L.
,
Azzopardi
,
K. M.
, and
Gatt
,
R.
,
2016
, “
Auxetic Perforated Mechanical Metamaterials With Randomly Oriented Cuts
,”
Adv. Mater.
,
28
(
2
), pp.
385
389
.
16.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
,
1996
, “
Design and Fabrication of Compliant Micromechanisms and Structures With Negative Poisson's Ratio
,”
IEEE
Ninth International Workshop on Micro Electromechanical Systems
, San Diego, CA, Feb. 11–15, pp.
365
371
.
17.
Lira
,
C.
,
Scarpa
,
F.
,
Olszewska
,
M.
, and
Celuch
,
M.
,
2009
, “
The SILICOMB Cellular Structure: Mechanical and Dielectric Properties
,”
Phys. Status Solidi
,
246
(
9
), pp.
2055
2062
.
18.
Grima
,
J. N.
,
Caruana-Gauci
,
R.
,
Attard
,
D.
, and
Gatt
,
R.
,
2012
, “
Three-Dimensional Cellular Structures With Negative Poisson's Ratio and Negative Compressibility Properties
,”
Proc. R. Soc. A
,
468
(
2146
), pp.
3121
3138
.
19.
Bu¨ckmann
,
T.
,
Stenger
,
N.
,
Kadic
,
M.
,
Kaschke
,
J.
,
Frölich
,
A.
,
Kennerknecht
,
T.
,
Eberl
,
C.
,
Thiel
,
M.
, and
Wegener
,
M.
,
2012
, “
Tailored 3D Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography
,”
Adv. Mater.
,
24
(
20
), pp.
2710
2714
.
20.
Grima
,
J. N.
,
Oliveri
,
L.
,
Attard
,
D.
,
Ellul
,
B.
,
Gatt
,
R.
,
Cicala
,
G.
, and
Recca
,
G.
,
2010
, “
Hexagonal Honeycombs With Zero Poisson's Ratios and Enhanced Stiffness
,”
Adv. Eng. Mater.
,
12
(
9
), pp.
855
862
.
21.
Olympio
,
K. R.
, and
Gandhi
,
F.
,
2010
, “
Zero Poisson's Ratio Cellular Honeycombs for Flex Skins Undergoing One-Dimensional Morphing
,”
J. Intell. Mater. Syst. Struct.
,
21
(
17
), pp.
1737
1753
.
22.
Soman
,
P.
,
Fozdar
,
D. Y.
,
Lee
,
J. W.
,
Phadke
,
A.
,
Varghese
,
S.
, and
Chen
,
S.
,
2012
, “
A Three-Dimensional Polymer Scaffolding Material Exhibiting a Zero Poisson's Ratio
,”
Soft Matter
,
8
(
18
), pp.
4946
4951
.
23.
Silva
,
S. P.
,
Sabino
,
M. A.
,
Fernandes
,
E. M.
,
Correlo
,
V. M.
,
Boesel
,
L. F.
, and
Reis
,
R. L.
,
2005
, “
Cork: Properties, Capabilities and Applications
,”
Int. Mater. Rev.
,
50
(
6
), pp.
345
365
.
24.
Wang
,
A.-J.
, and
McDowell
,
D. L.
,
2004
, “
In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs
,”
J. Eng. Mater. Technol.
,
126
(
2
), pp.
137
156
.
25.
Zhu
,
H. X.
,
Fan
,
T. X.
, and
Zhang
,
D.
,
2015
, “
Composite Materials With Enhanced Dimensionless Young's Modulus and Desired Poisson's Ratio
,”
Sci. Rep.
,
5
(
1
), p.
14103
.
26.
Lee
,
W.
,
Kang
,
D.-Y.
,
Song
,
J.
,
Moon
,
J. H.
, and
Kim
,
D.
,
2016
, “
Controlled Unusual Stiffness of Mechanical Metamaterials
,”
Sci. Rep.
,
6
, p.
20312
.
27.
Wang
,
F.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2014
, “
Design of Materials With Prescribed Nonlinear Properties
,”
J. Mech. Phys. Solids
,
69
, pp.
156
174
.
28.
Almgren
,
R. F.
,
1985
, “
An Isotropic Three-Dimensional Structure With Poisson's Ratio = −1
,”
J. Elast.
,
15
(
4
), pp.
427
430
.
29.
Cabras
,
L.
, and
Brun
,
M.
,
2014
, “
Auxetic Two-Dimensional Lattices With Poisson's Ratio Arbitrarily Close to −1
,”
Proc. R. Soc. A
,
470
(
2172
), p.
20140538
.
30.
Christensen
,
R. M.
,
1987
, “
Sufficient Symmetry Conditions for Isotropy of the Elastic Moduli Tensor
,”
ASME J. Appl. Mech.
,
54
(
4
), pp. 772–777.
31.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp. 788–798.
32.
Jutte
,
C. V.
, and
Kota
,
S.
,
2008
, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081403
.
33.
Rahman
,
M. U.
, and
Zhou
,
H.
,
2014
, “
Design of Constant Force Compliant Mechanisms
,”
Int. J. Eng. Res. Technol.
,
3
(
7
), pp.
14
19
.https://www.ijert.org/phocadownload/V3I7/IJERTV3IS070028.pdf
34.
Saxena
,
A.
,
2005
, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscip. Optim.
,
30
(
6
), pp.
477
490
.
35.
Lahuerta
,
R. D.
,
Nigro
,
P. S. B.
,
Sim
,
E. T.
,
Pimenta
,
P. M.
, and
Silva
,
N.
,
2014
, “
Design of Compliant Mechanism Considering Large Deformation Using Topology Optimization Method
,”
13th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (MM&FGM)
, pp.
1
8
.
36.
Liu
,
L.
,
Xing
,
J.
,
Yang
,
Q.
, and
Luo
,
Y.
,
2017
, “
Design of Large-Displacement Compliant Mechanisms by Topology Optimization Incorporating Modified Additive Hyperelasticity Technique
,”
Math. Probl. Eng.
,
2017
, pp.
1
11
.
37.
Jagla
,
E. A.
, and
Dalvit
,
D. A. R.
,
1991
, “
Null Length Springs: Some Curious Properties
,”
Am. J. Phys.
,
59
(
5
), pp.
434
436
.
38.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception, and Design of Statically Balanced Spring Mechanisms
,” Delft University of Technology, Delft, The Netherlands.
39.
Delissen
,
A. A. T. M.
,
Radaelli
,
G.
, and
Herder
,
J. L.
,
2017
, “
Design and Optimization of a General Planar Zero Free Length Spring
,”
Mech. Mach. Theory
,
117
, pp.
56
77
.
40.
de Payrebrune
,
K. M.
, and
O'Reilly
,
O. M.
,
2017
, “
On the Development of Rod-Based Models for Pneumatically Actuated Soft Robot Arms: A Five-Parameter Constitutive Relation
,”
Int. J. Solids Struct.
,
120
, pp.
226
235
.
41.
Syam
,
W. P.
,
Jianwei
,
W.
,
Zhao
,
B.
,
Maskery
,
I.
,
Elmadih
,
W.
, and
Leach
,
R.
,
2017
, “
Design and Analysis of Strut-Based Lattice Structures for Vibration Isolation
,”
Precis. Eng.
,
52
, pp. 494–506.
42.
Nagy
,
A. P.
,
2011
, “
Isogeometric Design Optimisation
,” Delft University of Technology, Delft, The Netherlands.
43.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
.
44.
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Meijer
,
H. E. H.
,
1998
, “
Prediction of the Mechanical Behavior of Nonlinear Heterogeneous Systems by Multi-Level Finite Element Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
155
(
1–2
), pp.
181
192
.
45.
Stratasys Inc.
,
2007
, “
P430 ABS Material Properties
,” Stratasys Inc., Eden Prairie, MN.
46.
Hernandez
,
R.
,
Slaughter
,
D.
,
Whaley
,
D.
,
Tate
,
J.
, and
Asiabanpour
,
B.
,
2016
, “
Analyzing the Tensile, Compressive, and Flexural Properties of 3D Printed ABS P430 Plastic Based on Printing Orientation Using Fused Deposition Modeling
,”
27th Annual International Solid Freeform Fabrication Symposium
, Austin, TX, pp.
939
950
.
You do not currently have access to this content.