Stiffened structures are widely used in industry. However, how to optimally distribute the stiffening ribs on a given base plate remains a challenging issue, partially because the topology and geometry of stiffening ribs are often represented in a geometrically implicit way in traditional approaches. This implicit treatment may lead to problems such as high computational cost (caused by the large number of design variables, geometry constraints in optimization, and large degrees-of-freedom (DOF) in finite element analysis (FEA)) and the issue of manufacturability. This paper presents a moving morphable component (MMC)-based approach for topology optimization of rib-stiffened structures, where the topology and the geometry of stiffening ribs are explicitly described. The proposed approach displays several prominent advantages, such as (1) both the numbers of design variables and DOF in FEA are reduced substantially; (2) the proper manufacture-related geometry requirements of stiffening ribs can be readily satisfied without introducing any additional constraint. The effectiveness of the proposed approach is further demonstrated with numerical examples on topology optimization of rib-stiffened structures with buckling constraints.

References

References
1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.
3.
Guo
,
X.
, and
Cheng
,
G. D.
,
2010
, “
Recent Development in Structural Design and Optimization
,”
Acta Mech. Sin.
,
26
(
6
), pp.
807
823
.
4.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
5.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.
6.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscip. Optim.
,
49
(
1
), pp.
1
38
.
7.
Liu
,
J. K.
, and
Ma
,
Y. S.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Softw.
,
100
, pp.
161
175
.
8.
Loughlan
,
J.
,
2004
,
Thin-Walled Structures: Advances in Research, Design and Manufacturing Technology
,
Taylor and Francis
, Boca Raton, FL.
9.
Wang
,
L. S.
,
Basu
,
P. K.
, and
Leiva
,
J. P.
,
2004
, “
Automobile Body Reinforcement by Finite Element Optimization
,”
Finite Elem. Anal. Des.
,
40
(
8
), pp.
879
893
.
10.
Bielawa
,
R. L.
,
2015
,
Rotary Wing Structural Dynamics and Aeroelasticity
,
2nd ed.
,
AIAA Education
, Washington, DC.
11.
Luo
,
J.
, and
Gea
,
H. C.
,
1998
, “
A Systematic Topology Optimization Approach for Optimal Stiffener Design
,”
Struct. Optim.
,
16
(
4
), pp.
280
288
.
12.
Afonso
,
S. M. B.
,
Belblidia
,
F.
, and
Sienz
,
J.
,
2004
, “
Design of Plates and Shells Using Several Optimization Strategies
,”
AIAA
Paper No. 2004-4416.
13.
Lam
,
Y. C.
, and
Santhikumar
,
S.
, “
Automated Rib Location and Optimization for Plate Structures
,”
Struct. Multidiscip. Optim.
,
25
(
1
), pp.
35
45
.
14.
Yang
,
R. J.
,
Chuang
,
C. H.
,
Che
,
X. D.
, and
Soto
,
C. A.
,
2000
, “
New Applications of Topology Optimization in Automotive Industry
,”
Int. J. Veh. Des.
,
23
(
1/2
), pp.
1
15
.
15.
Lam
,
Y. C.
,
Manickarajah
,
D.
, and
Bertolini
,
A.
,
2000
, “
Performance Characteristic of Resizing Algorithms for Thickness Optimization of Plate Structures
,”
Finite Elem. Anal. Des.
,
34
(
2
), pp.
159
174
.
16.
Lee
,
T. H.
,
Han
,
S. Y.
, and
Lim
,
J. K.
,
2000
, “
Topology Optimization of the Inner Reinforcement for an Automobile Hood Using Modal Design Sensitivity Analysis
,”
Key Eng. Mat.
,
183–187
, pp.
439
444
.
17.
Kailash
,
S. B.
,
Zhang
,
Y. F.
, and
Fuh
,
J. Y. H.
,
2001
, “
A Volume Decomposition Approach to Machining Feature Extraction of Casting and Forging Components
,”
Comput.-Aided Des.
,
33
(
8
), pp.
605
617
.
18.
Zhou
,
M.
,
Fleury
,
R.
,
Shyy
,
Y. K.
,
Thomas
,
H.
, and
Brennan
,
J. M.
,
2013
, “
Progress in Topology Optimization With Manufacturing Constraints
,”
AIAA
Paper No. 2002-5614.
19.
Liu
,
S. T.
,
Li
,
Q. H.
,
Chen
,
W. J.
,
Hu
,
R.
, and
Tong
,
L. Y.
,
2015
, “
H-DGTP—A Heaviside-Function Based Directional Growth Topology Parameterization for Design Optimization of Stiffener Layout and Height of Thin-Walled Structures
,”
Struct. Multidiscip. Optim.
,
52
(
5
), pp.
903
913
.
20.
Leiva
,
J. P.
,
Watson
,
B. C.
, and
Kosaka
,
I.
,
2004
, “
An Analytical Bi-Directional Growth Parameterization to Obtain Optimal Castable Topology Designs
,”
AIAA
Paper No. 2004-4596.
21.
Leiva
,
J. P.
,
Watson
,
B. C.
, and
Kosaka
,
I.
,
2004
, “
An Analytical Directional Growth Topology Parameterization to Enforce Manufacturing Requirements
,”
AIAA
Paper No. 2004-1645.
22.
Xia
,
Q.
,
Shi
,
T. L.
,
Wang
,
M. Y.
, and
Liu
,
S. Y.
,
2010
, “
A Level Set Based Method for the Optimization of Cast Part
,”
Struct. Multidiscip. Optim.
,
41
(
5
), pp.
735
747
.
23.
Xia
,
Q.
,
Shi
,
T. L.
,
Wang
,
M. Y.
, and
Liu
,
S. Y.
,
2011
, “
Simultaneous Optimization of Cast Part and Parting Direction Using Level Set Method
,”
Struct. Multidiscip. Optim.
,
44
(
6
), pp.
751
759
.
24.
Li
,
Q. H.
,
Chen
,
W. J.
,
Liu
,
S. T.
, and
Fan
,
H. R.
,
2018
, “
Topology Optimization Design of Cast Parts Based on Virtual Temperature Method
,”
Comput.-Aided Des.
,
94
, pp.
28
40
.
25.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Explicit Feature Control in Structural Topology Optimization Via Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
354
378
.
26.
Zhang
,
W. S.
,
Zhong
,
W. L.
, and
Guo
,
X.
,
2014
, “
An Explicit Length Scale Control Approach in SIMP-Based Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
282
, pp.
71
86
.
27.
Chen
,
S. K.
,
Wang
,
M. Y.
, and
Liu
,
A. Q.
,
2008
, “
Shape Feature Control in Structural Topology Optimization
,”
Comput.-Aided Des.
,
40
(
9
), pp.
951
962
.
28.
Liu
,
J. K.
,
Yu
,
H. C.
, and
Ma
,
Y. S.
,
2016
, “
Minimum Void Length Scale Control in Level Set Topology Optimization Subject to Machining Radii
,”
Comput.-Aided Des.
,
81
, pp.
70
80
.
29.
Fleury
,
C.
,
2007
, “
Structural Optimization Methods for Large Scale Problems: Status and Limitations
,”
ASME
Paper No. DETC2007-34326
.
30.
Ruocco
,
E.
,
2015
, “
Elastic/Plastic Buckling of Moderately Thick Plates and Members
,”
Comput. Struct.
,
158
, pp.
148
166
.
31.
Gao
,
X. J.
, and
Ma
,
H. T.
,
2015
, “
Topology Optimization of Continuum Structures Under Buckling Constraints
,”
Comput. Struct.
,
157
, pp.
142
152
.
32.
Madch
,
H.
, and
Amir
,
O.
,
2017
, “
Truss Optimization With Buckling Considerations Using Geometrically Nonlinear Beam Modeling
,”
Comput. Struct.
,
192
, pp.
233
247
.
33.
Mura
,
I.
,
2008
, “
Stability of Nonlinear Masonry Members Under Combined Load
,”
Comput. Struct.
,
86
(
15–16
), pp.
1579
1593
.
34.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
35.
Zhang
,
W. S.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
36.
Zhang
,
W. S.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Lagrangian Description Based Topology Optimization—A Revival of Shape Optimization
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041010
.
37.
Guo
,
X.
,
Zhang
,
W. S.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
711
748
.
38.
Zhang
,
W. S.
,
Li
,
D.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Minimum Length Scale Control in Structural Topology Optimization Based on the Moving Morphable Components (MMC) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
327
355
.
39.
Zhang
,
W. S.
,
Yang
,
W. Y.
,
Zhou
,
J. H.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011011
.
40.
Guo
,
X.
,
Zhou
,
J. H.
,
Zhang
,
W. S.
,
Du
,
Z. L.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
27
63
.
41.
Zhang
,
W. S.
,
Chen
,
J. S.
,
Zhu
,
X. F.
,
Zhou
,
J. H.
,
Xue
,
D. C.
, and
Lei
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization Via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
.
42.
Zhang
,
W. S.
,
Li
,
D.
,
Yuan
,
J.
,
Song
,
J. F.
, and
Guo
,
X.
,
2017
, “
A New Three-Dimensional Topology Optimization Method Based on Moving Morphable Components (MMCs)
,”
Comput. Mech.
,
59
(
4
), pp.
647
665
.
43.
Zhang
,
S. L.
, and
Norato
,
J. A.
,
2017
, “
Optimal Design of Panel Reinforcements With Ribs Made of Plates
,”
ASME J. Mech. Des.
,
139
(
8
), p.
081403
.
44.
Zhang
,
S. L.
,
Norato
,
J. A.
, and
Gain
,
A. L.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscip. Optim
,
54
(
5
), pp.
1173
1190
.
45.
Zhang
,
S. L.
,
Gain
,
A. L.
, and
Norato
,
J. A.
,
2017
, “
A Geometry Projection Method for the Topology Optimization of Curved Plate Structures With Placement Bounds
,”
Int. J. Numer. Methods Eng.
,
114
(
2
), pp.
128
146
.
46.
De Ruiter
,
M. J.
, and
Van Keulen
,
F.
,
2000
, “
Topology Optimization: Approaching the Material Distribution Problem Using a Topological Function Description
,”
Computational Techniques for Materials, Composites and Composite Structures
,
Topping
,
B. H. V.
, ed., Civil-Comp Press,
Edinburgh
,
Scotland
, pp.
111
119
.
47.
Guo
,
X.
,
Cheng
,
G. D.
, and
Yamazaki
,
K.
,
2001
, “
A New Approach for the Solution of Singular Optima in Truss Topology Optimization With Stress and Local Buckling Constraints
,”
Struct. Multidiscip. Optim.
,
22
(
5
), pp.
364
373
.
48.
Pedersen
,
N. L.
,
2000
, “
Maximization of Eigenvalues Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
20
(
1
), pp.
2
11
.
49.
Tcherniak
,
D.
,
2002
, “
Topology Optimization of Resonating Structures Using SIMP Method
,”
Int. J. Numer. Methods Eng.
,
54
(
11
), pp.
1605
1622
.
50.
Du
,
J. B.
, and
Olhoff
,
N.
,
2007
, “
Topological Design of Freely Vibrating Continuum Structures for Maximum Values of Simple and Multiple Eigenfrequencies and Frequency Gaps
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
91
110
.
51.
Crisfield
,
M. A.
,
Remmers
,
J. J.
, and
Verhoosel
,
C. V.
,
2012
,
Nonlinear Finite Element Analysis of Solids and Structures
,”
2nd ed.
,
Wiley
, West Sussex, UK.
52.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
53.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
54.
Zhang
,
W. H.
,
Zhou
,
Y.
, and
Zhu
,
J. H.
,
2017
, “
A Comprehensive Study of Feature Definitions With Solids and Voids for Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
325
, pp.
289
313
.
55.
Hoang
,
V. N.
, and
Jang
,
J. W.
,
2017
, “
Topology Optimization Using Moving Morphable Bars for Versatile Thickness Control
,”
Comput. Methods Appl. Mech. Eng.
,
317
, pp.
153
173
.
56.
Hou
,
W. B.
,
Gai
,
Y. D.
,
Zhu
,
X. F.
,
Wang
,
X.
,
Zhao
,
C.
,
Xu
,
L. K.
,
Jiang
,
K.
, and
Hu
,
P.
,
2017
, “
Explicit Isogeometric Topology Optimization Using Moving Morphable Components
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
694
712
.
57.
Takalloozadeh
,
M.
, and
Yoon
,
G. H.
,
2017
, “
Implementation of Topological Derivative in the Moving Morphable Components Approach
,”
Finite Elem. Anal. Des.
,
134
, pp.
16
26
.
58.
Sun
,
J. L.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2018
, “
Topology Optimization of a Three-Dimensional Flexible Multibody System Via Moving Morphable Components
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021010
.
59.
Zhang
,
W. S.
,
Li
,
D.
,
Zhou
,
J. H.
,
Du
,
Z. L.
,
Li
,
B. J.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Void (MMV)-Based Explicit Approach for Topology Optimization Considering Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
381
413
.
60.
Zhang
,
W. S.
,
Song
,
J. F.
,
Zhou
,
J. H.
,
Du
,
Z. L.
,
Zhu
,
Y. C.
,
Sun
,
Z.
, and
Guo
,
X.
,
2018
, “
Topology Optimization With Multiple Materials Via Moving Morphable Component (MMC) Method
,”
Int. J. Numer. Methods Eng.
,
113
(
11
), pp.
1653
1675
.
This content is only available via PDF.
You do not currently have access to this content.