A material's design revolution is underway with a focus to design the material microstructure and processing paths to achieve certain performance requirements of products. A host of manufacturing processes are involved in producing a product. The processing carried out in each process influences its final properties. To couple the material processing-structure-property-performance (PSPP) spaces, models of specific manufacturing processes must be enhanced and integrated using multiscale modeling techniques (vertical integration) and then the input and output of the various manufacturing processes must be integrated to facilitate the flow of information from one process to another (horizontal integration). Together vertical and horizontal integration allows for the decision-based design exploration of the manufacturing process chain in an inverse manner to realize the end product. In this paper, we present an inverse method to achieve the integrated design exploration of materials, products, and manufacturing processes through the vertical and horizontal integration of models. The method is supported by the concept exploration framework (CEF) to systematically explore design alternatives and generate satisficing design solutions. The efficacy of the method is illustrated for a hot rod rolling (HRR) and cooling process chain problem by exploring the processing paths and microstructure in an inverse manner to produce a rod with specific mechanical properties. The proposed method and the exploration framework are generic and support the integrated decision-based design exploration of a process chain to realize an end product by tailoring material microstructures and processing paths.

References

1.
Allen
,
J. K.
,
Panchal
,
J.
,
Mistree
,
F.
,
Singh
,
A. K.
, and
Gautham
,
B. P.
,
2015
, “
Uncertainty Management in the Integrated Realization of Materials and Components
,”
Third World Congress on Integrated Computational Materials Engineering (ICME)
, p.
339
.
2.
McDowell
,
D. L.
,
Panchal
,
J.
,
Choi
,
H.-J.
,
Seepersad
,
C.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2009
,
Integrated Design of Multiscale, Multifunctional Materials and Products
, Butterworth-Heinemann, Waltham, MA.
3.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
(
5330
), pp.
1237
1242
.
4.
Horstemeyer
,
M. F.
,
2018
,
Integrated Computational Materials Engineering (ICME) for Metals: Concepts and Case Studies
,
Wiley
, Hoboken, NJ.
5.
McDowell
,
D. L.
,
2018
, “
Microstructure-Sensitive Computational Structure-Property Relations in Materials Design
,”
Computational Materials System Design
,
Springer
, Cham, pp.
1
25
.
6.
Horstemeyer
,
M. F.
,
2012
,
Integrated Computational Materials Engineering (ICME) for Metals: Using Multiscale Modeling to Invigorate Engineering Design With Science
,
Wiley
, Hoboken, NJ.
7.
McDowell
,
D. L.
, and
Kalidindi
,
S. R.
,
2016
, “
The Materials Innovation Ecosystem: A Key Enabler for the Materials Genome Initiative
,”
MRS Bull.
,
41
(
4
), pp.
326
337
.
8.
Adams
,
B. L.
,
Kalidindi
,
S.
, and
Fullwood
,
D. T.
,
2013
,
Microstructure-Sensitive Design for Performance Optimization
,
Butterworth-Heinemann
, Waltham, MA.
9.
Kalidindi
,
S. R.
,
Niezgoda
,
S. R.
,
Landi
,
G.
,
Vachhani
,
S.
, and
Fast
,
T.
,
2010
, “
A Novel Framework for Building Materials Knowledge Systems
,”
Comput. Mater. Continua
,
17
(
2
), pp.
103
125
.
10.
Kalidindi
,
S. R.
,
Niezgoda
,
S. R.
, and
Salem
,
A. A.
,
2011
, “
Microstructure Informatics Using Higher-Order Statistics and Efficient Data-Mining Protocols
,”
JOM
,
63
(
4
), pp.
34
41
.
11.
McDowell
,
D. L.
, and
Olson
,
G.
,
2008
, “
Concurrent Design of Hierarchical Materials and Structures
,”
Scientific Modeling and Simulations
,
Springer
, Dordrecht, The Netherlands, pp.
207
240
.
12.
Choi
,
H.-J.
,
Mcdowell
,
D. L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Hierarchical Systems Design Under Uncertainty
,”
Eng. Optim.
,
40
(
4
), pp.
287
307
.
13.
Choi
,
H.
,
McDowell
,
D. L.
,
Allen
,
J. K.
,
Rosen
,
D.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031402
.
14.
Nellippallil
,
A. B.
,
Mohan
,
P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
Robust Concept Exploration of Materials, Products and Associated Manufacturing Processes
,”
ASME
Paper No. DETC2018-85913.
15.
Kern
,
P. C.
,
Priddy
,
M. W.
,
Ellis
,
B. D.
, and
McDowell
,
D. L.
,
2017
, “
pyDEM: A Generalized Implementation of the Inductive Design Exploration Method
,”
Mater. Des.
,
134
, pp.
293
300
.
16.
McDowell
,
D. L.
,
Choi
,
H. J.
,
Panchal
,
J.
,
Austin
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2007
, “
Plasticity-Related Microstructure-Property Relations for Materials Design
,”
Key Engineering Materials
,
Trans Tech Publications
, Zürich, Switzerland, pp.
21
30
.
17.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B. P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
A Goal-Oriented, Sequential, Inverse Design Method for the Horizontal Integration of a Multi-Stage Hot Rod Rolling System
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031403
.
18.
Tennyson
,
G.
,
Shukla
,
R.
,
Mangal
,
S.
,
Sachi
,
S.
, and
Singh
,
A. K.
,
2015
, “
ICME for Process Scale-Up: Importance of Vertical and Horizontal Integration of Models
,”
Third World Congress on Integrated Computational Materials Engineering (ICME 2015)
, pp.
11
21
.
19.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B.
,
1993
, “
Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Prog. Astronaut. Aeronaut.
,
150
, pp.
251
290
.
20.
Mistree
,
F.
,
Patel
,
B.
, and
Vadde
,
S.
,
1994
, “
On Modeling Multiple Objectives and Multi-Level Decisions in Concurrent Design
,”
Adv. Des. Autom.
,
69
(
2
), pp.
151
161
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.452.3054&rep=rep1&type=pdf
21.
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1997
, “
A Robust Concept Exploration Method for Enhancing Productivity in Concurrent Systems Design
,”
Concurrent Eng.
,
5
(
3
), pp.
203
217
.
22.
Hodgson
,
P.
, and
Gibbs
,
R.
,
1992
, “
A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels
,”
ISIJ Int.
,
32
(
12
), pp.
1329
1338
.
23.
Kuziak
,
R.
,
Cheng
,
Y.-W.
,
Glowacki
,
M.
, and
Pietrzyk
,
M.
,
1997
, “
Modeling of the Microstructure and Mechanical Properties of Steels During Thermomechanical Processing
,” National Institute of Standards and Technology, Gaithersburg, MD, NIST Technical Note.
1393
.https://www.gpo.gov/fdsys/pkg/GOVPUB-C13-55dca2f44f9d8882a1646ba345bfcc1a/pdf/GOVPUB-C13-55dca2f44f9d8882a1646ba345bfcc1a.pdf
24.
Majta
,
J.
,
Kuziak
,
R.
,
Pietrzyk
,
M.
, and
Krzton
,
H.
,
1996
, “
Use of the Computer Simulation to Predict Mechanical Properties of C-Mn Steel, After Thermomechanical Processing
,”
J. Mater. Process. Technol.
,
60
(
1–4
), pp.
581
588
.
25.
Phadke
,
S.
,
Pauskar
,
P.
, and
Shivpuri
,
R.
,
2004
, “
Computational Modeling of Phase Transformations and Mechanical Properties During the Cooling of Hot Rolled Rod
,”
J. Mater. Process. Technol.
,
150
(
1–2
), pp.
107
115
.
26.
Nellippallil
,
A. B.
,
De
,
P.
,
Gupta
,
A.
,
Goyal
,
S.
, and
Singh
,
A.
,
2016
, “
Hot Rolling of a Non-Heat Treatable Aluminum Alloy: Thermo-Mechanical and Microstructure Evolution Model
,”
Trans. Indian Inst. Met.
,
70
(5), pp. 1387–1398.
27.
Jägle
,
E.
,
2007
, “
Modelling of Microstructural Banding During Transformations in Steel
,” Ph. D. dissertation, University of Cambridge, Cambridge, UK.
28.
Shukla
,
R.
,
Goyal
,
S.
,
Singh
,
A. K.
,
Panchal
,
J. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2015
, “
Design Exploration for Determining the Set Points of Continuous Casting Operation: An Industrial Application
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034503
.
29.
Taguchi
,
G.
,
Introduction to Quality Engineering, Asian Productivity Organization, 1986, Distributed by the American Supplier Institute
, Quality Resources,
Dearborn, MI
.
30.
Bras
,
B.
, and
Mistree
,
F.
,
1993
, “
Robust Design Using Compromise Decision Support Problems
,”
Eng. Optim.
,
21
(
3
), pp.
213
239
.
31.
Pietrzyk
,
M.
,
Cser
,
L.
, and
Lenard
,
J.
,
1999
,
Mathematical and Physical Simulation of the Properties of Hot Rolled Products
,
Elsevier
, Kidlington, Oxford.
32.
Wang
,
R.
,
Nellippallil
,
A. B.
,
Wang
,
G.
,
Yan
,
Y.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
Systematic Design Space Exploration Using a Template-Based Ontological Method
,”
Adv. Eng. Inf.
,
36
, pp.
163
177
.
33.
Gladman
,
T.
,
Dulieu
,
D.
, and
McIvor
,
I. D.
,
1977
, “
Structure/Property Relationships in High-Strength Micro-Alloyed Steels
,”
Conf. Microalloying
,
75
, pp.
32
55
.
34.
Gladman
,
T.
,
McIvor
,
I.
, and
Pickering
,
F.
,
1972
, “
Some Aspects of the Structure-Property Relationships in High-C Ferrite-Pearlite Steels
,”
J. Iron Steel Inst.
,
210
(
12
), pp.
916
930
.
35.
Yada
,
H.
,
1987
, “
Prediction of Microstructural Changes and Mechanical Properties in Hot Strip Rolling
,”
International Symposium on Accelerated Cooling Rolled Steel
, Winnipeg, MB, Canada, Aug. 24–25, pp.
105
119
.
36.
Nellippallil
,
A. B.
,
Allen
,
J. K.
,
Mistree
,
F.
,
Vignesh
,
R.
,
Gautham
,
B. P.
, and
Singh
,
A. K.
,
2017
, “
A Goal-Oriented, Inverse Decision-Based Design Method to Achieve the Vertical and Horizontal Integration of Models in a Hot-Rod Rolling Process Chain
,”
ASME
Paper No. DETC2017-67570.
37.
Robson
,
J.
, and
Bhadeshia
,
H.
,
1997
, “
Modelling Precipitation Sequences in Power Plant Steels—Part 1: Kinetic Theory
,”
Mater. Sci. Technol.
,
13
(
8
), pp.
631
639
.
38.
Jones
,
S.
, and
Bhadeshia
,
H.
,
1997
, “
Kinetics of the Simultaneous Decomposition of Austenite Into Several Transformation Products
,”
Acta Mater.
,
45
(
7
), pp.
2911
2920
.
39.
Jones
,
S.
, and
Bhadeshia
,
H.
,
1997
, “
Competitive Formation of Inter-and Intragranularly Nucleated Ferrite
,”
Metall. Mater. Trans. A
,
28
(
10
), pp.
2005
2013
.
40.
Jones
,
S. J.
, and
Bhadeshia
,
H. K. D. H.
, 2017, “
Program Structure on the Materials Algorithm Project
,” Materials Algorithms Project Program Library, Feb. 4,
2017
, http://www.msm.cam.ac.uk/map/steel/programs/structure.html
41.
Bodnar
,
R.
, and
Hansen
,
S.
,
1994
, “
Effects of Austenite Grain Size and Cooling Rate on Widmanstätten Ferrite Formation in Low‐Alloy Steels
,”
Metall. Mater. Trans. A.
,
25
(
4
), pp.
665
675
.
42.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2016
, “
A Goal Oriented, Sequential Process Design of a Multi-Stage Hot Rod Rolling System
,”
ASME
Paper No. DETC2016‐59402.
You do not currently have access to this content.