We present a new method for the simultaneous topology optimization and material selection of structures made by the union of discrete geometric components, where each component is made of one of multiple available materials. Our approach is based on the geometry projection method, whereby an analytical description of the geometric components is smoothly mapped onto a density field on a fixed analysis grid. In addition to the parameters that dictate the dimensions, position, and orientation of the component, a size variable per available material is ascribed to each component. A size variable value of unity indicates that the component is made of the corresponding material. Moreover, all size variables can be zero, signifying the component is entirely removed from the design. We penalize intermediate values of the size variables via an aggregate constraint in the optimization. We also introduce a mutual material exclusion constraint that ensures that at most one material has a unity size variable in each geometric component. In addition to these constraints, we propose a novel aggregation scheme to perform the union of geometric components with dissimilar materials. These ingredients facilitate treatment of the multi-material case. Our formulation can be readily extended to any number of materials. We demonstrate our method with several numerical examples.

References

References
1.
Sigmund
,
O.
, and
Torquato
,
S.
,
1997
, “
Design of Materials With Extreme Thermal Expansion Using a Three-Phase Topology Optimization Method
,”
J. Mech. Phys. Solids
,
45
(
6
), pp.
1037
1067
.
2.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Multidiscip. Optim.
,
1
(
4
), pp.
193
202
.
3.
Rozvany
,
G.
, and
Zhou
,
M.
,
1991
, “
The COC Algorithm, Part I: Cross-Section Optimization or Sizing
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
281
308
.
4.
Gibiansky
,
L. V.
, and
Sigmund
,
O.
,
2000
, “
Multiphase Composites With Extremal Bulk Modulus
,”
J. Mech. Phys. Solids
,
48
(
3
), pp.
461
498
.
5.
Carbonari
,
R. C.
,
Silva
,
E. C.
, and
Nishiwaki
,
S.
,
2007
, “
Optimum Placement of Piezoelectric Material in Piezoactuator Design
,”
Smart Mater. Struct.
,
16
(
1
), p.
207
.
6.
Luo
,
Z.
,
Gao
,
W.
, and
Song
,
C.
,
2010
, “
Design of Multi-Phase Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1851
1865
.
7.
Kang
,
Z.
,
Wang
,
R.
, and
Tong
,
L.
,
2011
, “
Combined Optimization of Bi-Material Structural Layout and Voltage Distribution for in-Plane Piezoelectric Actuation
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1467
1478
.
8.
Luo
,
Y.
, and
Kang
,
Z.
,
2013
, “
Layout Design of Reinforced Concrete Structures Using Two-Material Topology Optimization With Drucker–Prager Yield Constraints
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
95
110
.
9.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization–Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49–50
), pp.
6605
6627
.
10.
Yin
,
L.
, and
Ananthasuresh
,
G.
,
2001
, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
49
62
.
11.
Stegmann
,
J.
, and
Lund
,
E.
,
2005
, “
Discrete Material Optimization of General Composite Shell Structures
,”
Int. J. Numer. Methods Eng.
,
62
(
14
), pp.
2009
2027
.
12.
Lund
,
E.
,
2009
, “
Buckling Topology Optimization of Laminated Multi-Material Composite Shell Structures
,”
Compos. Struct.
,
91
(
2
), pp.
158
167
.
13.
Gao
,
T.
, and
Zhang
,
W.
,
2011
, “
A Mass Constraint Formulation for Structural Topology Optimization With Multiphase Materials
,”
Int. J. Numer. Methods Eng.
,
88
(
8
), pp.
774
796
.
14.
Hvejsel
,
C. F.
, and
Lund
,
E.
,
2011
, “
Material Interpolation Schemes for Unified Topology and Multi-Material Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
6
), pp.
811
825
.
15.
Buehler
,
M. J.
,
Bettig
,
B.
, and
Parker
,
G. G.
,
2004
, “
Topology Optimization of Smart Structures Using a Homogenization Approach
,”
J. Intell. Mater. Syst. Struct.
,
15
(
8
), pp.
655
667
.
16.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2015
, “
A Pareto-Optimal Approach to Multimaterial Topology Optimization
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101701
.
17.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, “
Color” Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6–8
), pp.
469
496
.
18.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
,
2005
, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
941
956
.
19.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Stress-Related Topology Optimization of Continuum Structures Involving Multi-Phase Materials
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
632
655
.
20.
Wang
,
M. Y.
, and
Wang
,
X.
,
2005
, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
Comput.-Aided Des.
,
37
(
3
), pp.
321
337
.
21.
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
78
(
4
), pp.
379
402
.
22.
Luo
,
Z.
,
Tong
,
L.
,
Luo
,
J.
,
Wei
,
P.
, and
Wang
,
M. Y.
,
2009
, “
Design of Piezoelectric Actuators Using a Multiphase Level Set Method of Piecewise Constants
,”
J. Comput. Phys.
,
228
(
7
), pp.
2643
2659
.
23.
Wang
,
Y.
,
Luo
,
Z.
,
Kang
,
Z.
, and
Zhang
,
N.
,
2015
, “
A Multi-Material Level Set-Based Topology and Shape Optimization Method
,”
Comput. Methods Appl. Mech. Eng.
,
283
, pp.
1570
1586
.
24.
Zhou
,
S.
, and
Wang
,
M. Y.
,
2007
, “
Multimaterial Structural Topology Optimization With a Generalized Cahn–Hilliard Model of Multiphase Transition
,”
Struct. Multidiscip. Optim.
,
33
(
2
), pp.
89
111
.
25.
Tavakoli
,
R.
, and
Mohseni
,
S. M.
,
2014
, “
Alternating Active-Phase Algorithm for Multimaterial Topology Optimization Problems: A 115-Line Matlab Implementation
,”
Struct. Multidiscip. Optim.
,
49
(
4
), pp.
621
642
.
26.
Tavakoli
,
R.
,
2014
, “
Multimaterial Topology Optimization by Volume Constrained Allen–Cahn System and Regularized Projected Steepest Descent Method
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
534
565
.
27.
Wallin
,
M.
,
Ivarsson
,
N.
, and
Ristinmaa
,
M.
,
2015
, “
Large Strain Phase-Field-Based Multi-Material Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
104
(
9
), pp.
887
904
.
28.
Bell
,
B.
,
Norato
,
J.
, and
Tortorelli
,
D.
,
2012
, “
A Geometry Projection Method for Continuum-Based Topology Optimization of Structures
,”
AIAA
Paper No. AIAA 2012-5485..
29.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
30.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1173
1190
.
31.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—a New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
32.
Deng
,
J.
, and
Chen
,
W.
,
2016
, “
Design for Structural Flexibility Using Connected Morphable Components Based Topology Optimization
,”
Sci. China Technol. Sci.
,
59
(
6
), pp.
839
851
.
33.
Watts
,
S.
, and
Tortorelli
,
D. A.
,
2017
, “
A Geometric Projection Method for Designing Three-Dimensional Open Lattices With Inverse Homogenization
,”
Int. J. Numer. Methods Eng.
,
112
(
11
), pp.
1564
1588
.
34.
Zhang
,
W.
,
Song
,
J.
,
Zhou
,
J.
,
Du
,
Z.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
, “
Topology Optimization With Multiple Materials Via Moving Morphable Component (MMC) Method
,”
Int. J. Numer. Methods Eng.
,
113
(11), 1653–1675.
35.
Faure
,
A.
,
Michailidis
,
G.
,
Parry
,
G.
,
Vermaak
,
N.
, and
Estevez
,
R.
,
2017
, “
Design of Thermoelastic Multi-Material Structures With Graded Interfaces Using Topology Optimization
,”
Struct. Multidiscip. Optim.
,
56
(
4
), pp.
823
837
.
36.
Kreisselmeier
,
G.
,
1979
, “
Systematic Control Design by Optimizing a Vector Performance Index
,” IFAC Symposium, Zürich, Switzerland, Aug. 29–31, pp. 113–117.
37.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
605
620
.
38.
Svanberg
,
K.
,
2002
, “
A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
,”
SIAM J. Optim.
,
12
(
2
), pp.
555
573
.
39.
Svanberg
,
K.
,
2007
, “
MMA and GCMMA, Versions September 2007
,” Optimization and Systems Theory, KTH, Stockholm, Sweden, accessed July 12, 2018, https://people.kth.se/~krille/mmagcmma.pdf
40.
Michell
,
A. G. M.
,
1904
, “
LVIII. the Limits of Economy of Material in Frame-Structures
,”
Philos. Mag. J. Sci.
,
8
(
47
), pp.
589
597
.
41.
Bangerth
,
W.
,
Hartmann
,
R.
, and
Kanschat
,
G.
,
2007
, “
Deal.II—A General Purpose Object Oriented Finite Element Library
,”
ACM Trans. Math. Software
,
33
(
4
), pp.
24/1
24/27
.
42.
Bangerth
,
W.
,
Davydov
,
D.
,
Heister
,
T.
,
Heltai
,
L.
,
Kanschat
,
G.
,
Kronbichler
,
M.
,
Maier
,
M.
,
Turcksin
,
B.
, and
Wells
,
D.
, “
The Deal.II Library, Version 8.4
,”
J. Numer. Math.
,
24
(3), 135–141.
You do not currently have access to this content.