We present the results from a workshop on interdisciplinary research on design of engineering material systems, sponsored by the National Science Foundation. The workshop was prompted by the need to foster a culture of interdisciplinary collaboration between the engineering design and materials communities. The workshop addressed the following: (i) conceptual barriers between materials and engineering design research communities; (ii) research questions that the interdisciplinary field of materials design should focus on; (iii) processes and metrics to be used to validate research activities and outcomes on materials design; and (iv) strategies to sustain and grow the interdisciplinary field. This contribution presents a summary of the state of the field—elicited through extensive guided discussions between representatives of both communities—and a snapshot of research activities that have emerged since the workshop. Based on the increasing level of sophistication of interdisciplinary research programs on design of materials it is apparent that the field is growing and has great potential to play a key role in a vibrant interdisciplinary materials innovation ecosystem. Sustaining such efforts will contribute significantly to the advancement of technologies that will impact many industries and will enhance society-wide health, security, and economic well-being.

References

References
1.
Olson
,
G. B.
,
1997
, “
Computational Design of Hierarchically Structured Materials
,”
Science
,
277
(
5330
), pp.
1237
1242
.
2.
Olson
,
G. B.
,
2000
, “
Designing a New Material World
,”
Science
,
288
(
5468
), pp.
993
998
.
3.
Seepersad
,
C.
,
Fernandez
,
M.
,
Panchal
,
J.
,
Choi
,
H.
,
Allen
,
J.
,
McDowell
,
D.
, and
Mistree
,
F.
,
2004
, “
Foundations for a Systems-Based Approach for Materials Design
,”
AIAA
Paper No. 2004-4300.
4.
McDowell
,
D. L.
,
Panchal
,
J.
,
Choi
,
H.-J.
,
Seepersad
,
C.
,
Allen
,
J.
, and
Mistree
,
F.
,
2009
,
Integrated Design of Multiscale, Multifunctional Materials and Products
,
Butterworth-Heinemann
, Burlington, MA.
5.
Horstemeyer
,
M. F.
,
2000
, “
From Atoms to Autos: A New Design Paradigm Using Microstructure-Property Modeling—Part 1: Monotonic Loading Conditions
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2000-8662
.https://digital.library.unt.edu/ark:/67531/metadc742598/
6.
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
, and
Fan
,
J.
,
2000
, “
From Atoms to Autos: A New Design Paradigm Using Microstructure-Property Modeling—Part 2: Cyclic Fatigue
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2000-8661
.https://prod.sandia.gov/techlib-noauth/access-control.cgi/2000/008661.pdf
7.
Holdren
,
J. P.
, and
ad hoc Group of the National Science and Technology Council
,
2011
,
Materials Genome Initiative for Global Competitiveness
,
National Science and Technology Council OSTP
, National Science and Technology Council, Washington, DC.
8.
Scott
,
T.
,
Walsh
,
A.
, and
Anderson
,
B.
,
O'Connor
,
A.
,
2018
, “
Economic Analysis of National Needs for Technology Infrastructure to Support the Materials Genome Initiative
,” Technology Partnerships Office, Office of Innovation and Industry National Institute of Standards and Technology U.S. Department of Commerce Gaithersburg, MD, accessed June 19, 2018 https://mgi.nist.gov/sites/default/files/uploads/\\MGI\_Econ\_Analysis.pdf
9.
Allison
,
J.
,
2011
, “
Integrated Computational Materials Engineering: A Perspective on Progress and Future Steps
,”
JOM
,
63
(
4
), pp.
15
18
.
10.
Glamm
,
R. J.
,
Rosenbladt
,
D. M.
,
Pripstein
,
E. D.
, and
Cotton
,
J. D.
,
2015
, “
Recent Progress in Implementation of ICME for Metallic Materials in the Airframe Industry
,”
AIAA
Paper No. AIAA 2015-0199.
11.
Howe
,
D.
,
Goodlet
,
B.
,
Weaver
,
J.
, and
Spanos
,
G.
,
2016
, “
Insights From the 3rd World Congress on Integrated Computational Materials Engineering
,”
JOM
,
68
(
5
), pp.
1378
1384
.
12.
OMara
,
J.
,
Meredig
,
B.
, and
Michel
,
K.
,
2016
, “
Materials Data Infrastructure: A Case Study of the Citrination Platform to Examine Data Import, Storage, and Access
,”
JOM
,
68
(
8
), pp.
2031
2034
.
13.
Hill
,
J.
,
Mulholland
,
G.
,
Persson
,
K.
,
Seshadri
,
R.
,
Wolverton
,
C.
, and
Meredig
,
B.
,
2016
, “
Materials Science With Large-Scale Data and Informatics: Unlocking New Opportunities
,”
MRS Bull.
,
41
(
5
), pp.
399
409
.
14.
Kalidindi
,
S. R.
,
Brough
,
D. B.
,
Li
,
S.
,
Cecen
,
A.
,
Blekh
,
A. L.
,
Congo
,
F. Y. P.
, and
Campbell
,
C.
,
2016
, “
Role of Materials Data Science and Informatics in Accelerated Materials Innovation
,”
MRS Bull.
,
41
(
8
), pp.
596
602
.
15.
Borrego
,
M.
, and
Newswander
,
L. K.
,
2010
, “
Definitions of Interdisciplinary Research: Toward Graduate-Level Interdisciplinary Learning Outcomes
,”
Rev. Higher Educ.
,
34
(
1
), pp.
61
84
.
16.
Choi
,
H.
,
McDowell
,
D. L.
,
Allen
,
J. K.
,
Rosen
,
D.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031402
.
17.
Xu
,
H.
,
Li
,
Y.
,
Brinson
,
C.
, and
Chen
,
W.
,
2014
, “
A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051007
.
18.
Hazelrigg
,
G. A.
,
2003
, “
Validation of Engineering Design Alternative Selection Methods
,”
Eng. Optim.
,
35
(
2
), pp.
103
210
.
19.
Seepersad
,
C. C.
,
Pedersen
,
K.
,
Emblemsvg
,
J.
,
Bailey
,
R.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2006
, “
The Validation Square: How Does One Verify and Validate a Design Method
?,”
Decision Making in Engineering Design
,
American Society of Mechanical Engineers
,
New York
, pp.
303
314
.
20.
Olewnik
,
A. T.
, and
Lewis
,
K.
,
2005
, “
On Validating Engineering Design Decision Support Tools
,”
Concurrent Eng.
,
13
(
2
), pp.
111
122
.
21.
Binder
,
W. R.
, and
Paredis
,
C. J.
,
2017
, “
Optimization Under Uncertainty Versus Algebraic Heuristics: A Research Method for Comparing Computational Design Methods
,”
ASME
Paper No. DETC2017-68371.
22.
Massoni
,
B.
, and
Campbell
,
M. I.
,
2018
, “
Optimizing Cutting Planes for Advanced Joining and Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031001
.
23.
Galvan
,
E.
,
Malak
,
R. J.
,
Gibbons
,
S.
, and
Arroyave
,
R.
,
2017
, “
A Constraint Satisfaction Algorithm for the Generalized Inverse Phase Stability Problem
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011401
.
24.
Nellippallil
,
A. B.
,
Shukla
,
R.
,
Ardham
,
S.
,
Goh
,
C.-H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2017
, “
Exploration of Solution Space to Study Thermo-Mechanical Behavior of AA5083 Al-Alloy During Hot Rolling Process
,”
ASME
Paper No. DETC2017-68173.
25.
Xue
,
D.
,
Balachandran
,
P. V.
,
Hogden
,
J.
,
Theiler
,
J.
,
Xue
,
D.
, and
Lookman
,
T.
,
2016
, “
Accelerated Search for Materials With Targeted Properties by Adaptive Design
,”
Nat. Commun.
,
7
, p.
11241
.
26.
Bessa
,
M.
,
Bostanabad
,
R.
,
Liu
,
Z.
,
Hu
,
A.
,
Apley
,
D. W.
,
Brinson
,
C.
,
Chen
,
W.
, and
Liu
,
W. K.
,
2017
, “
A Framework for Data-Driven Analysis of Materials Under Uncertainty: Countering the Curse of Dimensionality
,”
Comput. Methods Appl. Mech. Eng.
,
320
, pp.
633
667
.
27.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
28.
Yeten
,
B.
,
Castellini
,
A.
,
Guyaguler
,
B.
, and
Chen
,
W.
,
2005
, “
A Comparison Study on Experimental Design and Response Surface Methodologies
,”
SPE Reservoir Simulation Symposium
, The Woodlands, TX, Jan. 31–Feb. 2.
29.
Galvan
,
E.
,
Hsiao
,
C.
,
Vermillion
,
S.
, and
Malak
,
R.
,
2015
, “
A Parallel Approach for Computing the Expected Value of Gathering Information
,”
SAE Int. J. Mater. Manuf.
,
8
(
2
), pp.
271
282
.https://www.jstor.org/stable/26268713
30.
Moore
,
R. A.
,
Romero
,
D. A.
, and
Paredis
,
C. J.
,
2014
, “
Value-Based Global Optimization
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041003
.
31.
Messer
,
M.
,
Panchal
,
J. H.
,
Krishnamurthy
,
V.
,
Klein
,
B.
,
Yoder
,
P. D.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2010
, “
Model Selection Under Limited Information Using a Value-of-Information-Based Indicator
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121008
.
32.
Sadoughi
,
M. K.
,
Li
,
M.
,
Hu
,
C.
, and
Mackenzie
,
C. A.
,
2017
, “
High-Dimensional Reliability Analysis of Engineered Systems Involving Computationally Expensive Black-Box Simulations
,”
ASME
Paper No. DETC2017-68273.
33.
Hajikolaei
,
K. H.
, and
Wang
,
G. G.
,
2014
, “
High Dimensional Model Representation With Principal Component Analysis
,”
ASME J. Mech. Des.
,
136
(
1
), p.
011003
.
34.
Sivapuram
,
R.
,
Dunning
,
P. D.
, and
Kim
,
H. A.
,
2016
, “
Simultaneous Material and Structural Optimization by Multiscale Topology Optimization
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1267
1281
.
35.
Hasan
,
M. F.
,
First
,
E. L.
, and
Floudas
,
C. A.
,
2017
, “
Discovery of Novel Zeolites and Multi-Zeolite Processes for p-Xylene Separation Using Simulated Moving Bed (Smb) Chromatography
,”
Chem. Eng. Sci.
,
159
, pp.
3
17
.
36.
Lee
,
Y. H.
,
Schuh
,
J. K.
,
Ewoldt
,
R. H.
, and
Allison
,
J. T.
,
2018
, “
Simultaneous Design of Non-Newtonian Lubricant and Surface Texture Using Surrogate-Based Optimization
,”
AIAA
Paper No. AIAA 2018-1906.
37.
Pfeifer
,
S.
,
Wodo
,
O.
, and
Ganapathysubramanian
,
B.
,
2018
, “
An Optimization Approach to Identify Processing Pathways for Achieving Tailored Thin Film Morphologies
,”
Comput. Mater. Sci.
,
143
, pp.
486
496
.
38.
Hartl
,
D. J.
,
Kiefer
,
B.
,
Schulte
,
R.
, and
Menzel
,
A.
,
2017
, “
Computationally-Efficient Modeling of Inelastic Single Crystal Responses Via Anisotropic Yield Surfaces: Applications to Shape Memory Alloys
,”
Int. J. Solids Struct.
,
136–137
, pp.
38
59
.
39.
Friedrich
,
L.
,
Collino
,
R.
,
Ray
,
T.
, and
Begley
,
M.
,
2017
, “
Acoustic Control of Microstructures During Direct Ink Writing of Two-Phase Materials
,”
Sens. Actuators A: Phys.
,
268
, pp.
213
221
.
40.
Cang
,
R.
,
Xu
,
Y.
,
Chen
,
S.
,
Liu
,
Y.
,
Jiao
,
Y.
, and
Ren
,
M. Y.
,
2017
, “
Microstructure Representation and Reconstruction of Heterogeneous Materials Via Deep Belief Network for Computational Material Design
,”
ASME J. Mech. Des.
,
139
(
7
), p.
071404
.
41.
Xiao
,
W.
,
Li
,
Y.
, and
Wang
,
P.
,
2018
, “
Uncertainty Quantification of Atomistic Materials Simulation With Machine Learning Potentials
,”
AIAA
Paper No. AIAA 2018-2166.
42.
Cecen
,
A.
,
Dai
,
H.
,
Yabansu
,
Y. C.
,
Kalidindi
,
S. R.
, and
Song
,
L.
,
2017
, “
Material Structure-Property Linkages Using Three-Dimensional Convolutional Neural Networks
,”
Acta Mater.
,
146
, pp.
76
84
.
43.
Fowler
,
D. A.
,
Arroyave
,
R.
,
Ross
,
J.
,
Malak
,
R.
, and
Banerjee
,
S.
,
2017
, “
Looking Outwards From the Central Science: An Interdisciplinary Perspective on Graduate Education in Materials Chemistry
,”
Educational and Outreach Projects From the Cottrell Scholars Collaborative Undergraduate and Graduate Education
, Vol.
1
,
ACS Publications
, Washington, DC, pp.
65
89
.
44.
Chang
,
C.-N.
,
Semma
,
B.
,
Pardo
,
M. L.
,
Fowler
,
D.
,
Shamberger
,
P.
, and
Arroyave
,
R.
,
2017
, “
Data-Enabled Discovery and Design of Energy Materials (D3EM): Structure of an Interdisciplinary Materials Design Graduate Program
,”
MRS Adv.
,
2
(
31–32
), pp.
1693
1698
.
You do not currently have access to this content.