The paper initially reports about the properties of an expression of dual generalized inverse matrix currently available in the literature. It is demonstrated that such a matrix does not fulfill all the Penrose conditions. Hence, novel and computationally efficient algorithms/formulas for the computation of the Moore–Penrose dual generalized inverse (MPDGI) are herein proposed. The paper also contains a new algorithm for the singular value decomposition (SVD) of a dual matrix. The availability of these formulas allows the simultaneous solution of overdetermined systems of dual linear equations without requiring the traditional separation in primal and dual parts. This should prove useful for the solution of many kinematic problems. The algorithms/formulas herein deduced have been also tested on the kinematic synthesis of the constant transmission ratio RCCC spatial linkage.

References

References
1.
Udwadia
,
F.
, and
Kalaba
,
R.
,
1999
, “
A Unified Approach for the Recursive Determination of Generalized Inverses
,”
Comput. Math. Appl.
,
37
(
1
), pp.
125
130
.
2.
Ben-Israel
,
A.
, and
Greville
,
T.
,
2001
,
Generalized Inverses: Theory and Applications
,
Springer Verlag
, New York.
3.
Angeles
,
J.
,
1997
, “
The Application of Dual Algebra to Kinematic Analysis
,”
Computational Methods in Mechanical Systems
(NATO ASI Series, Vol.
161
),
J.
Angeles
and
E.
Zakhariev
, eds.,
Springer
, Berlin, pp.
3
32
.
4.
Fischer
,
I. S.
,
2003
, “
Velocity Analysis of Mechanisms With Ball Joints
,”
Mech. Res. Commun.
,
30
(
1
), pp.
69
78
.
5.
Condurache
,
D.
, and
Burlacu
,
A.
,
2014
, “
Dual Tensors Based Solutions for Rigid Body Motion Parameterization
,”
Mech. Mach. Theory
,
74
, pp.
390
412
.
6.
Condurache
,
D.
, and
Burlacu
,
A.
,
2016
, “
Orthogonal Dual Tensor Method for Solving the AX=XB Sensor Calibration Problem
,”
Mech. Mach. Theory
,
104
, pp.
382
404
.
7.
Pennestrì
,
E.
,
Valentini
,
P. P.
,
Figliolini
,
G.
, and
Angeles
,
J.
,
2016
, “
Dual Cayley–Klein Parameters and Möbius Transform: Theory and Applications
,”
Mech. Mach. Theory
,
106
, pp.
50
67
.
8.
de Falco
,
D.
,
Pennestrì
,
E.
, and
Udwadia
,
F.
,
2017
, “
On Generalized Inverses of Dual Matrices
,”
Mech. Mach. Theory
,
123
, pp.
89
106
.
9.
Angeles
,
J.
,
2012
, “
The Dual Generalized Inverses and Their Applications in Kinematic Synthesis
,”
Latest Advances in Robot Kinematics
(Advances in Robot Kinematics, Vol. 11),
J.
Lenarčič
and
M.
Husty
, eds.,
Springer Verlag
, Berlin, Germany, pp.
1
11
.
10.
Angeles
,
J.
,
1986
, “
Computation of the Screw Parameters of Rigid-Body Motion—Part II: Infinitesimally-Separated Positions
,”
ASME J. Dyn. Syst. Meas. Control
,
108
(
1
), pp.
39
43
.
11.
Ravani
,
B.
, and
Ge
,
Q. J.
,
1993
, “
Computation of Spatial Displacements Form Geometric Features
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
95
102
.
12.
Ge
,
Q. J.
, and
Ravani
,
B.
,
1994
, “
Computation of Spatial Displacements From Redundant Geometric Features
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1073
1084
.
13.
Baroon
,
B.
, and
Ravani
,
B.
,
2010
, “
Three-Dimensional Generalizations of Reuleaux's and Instant Center Methods Based on Line Geometry
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
8
.
14.
Condurache
,
D.
, and
Burlacu
,
A.
,
2014
, “
Recovering Dual Euler Parameters From Feature-Based Representation of Motion
,”
Advances in Robot Kinematics
,
J.
Lenarcic
and
O.
Khatib
, eds.,
Springer International Publishing
, New York, pp.
295
305
.
15.
Pennestrì
,
E.
, and
Stefanelli
,
R.
,
2007
, “
Linear Algebra and Numerical Algorithms Using Dual Numbers
,”
Multibody Syst. Dyn.
,
18
(
3
), pp.
323
344
.
16.
Pennestrì
,
E.
, and
Valentini
,
P. P.
,
2009
, “
Linear Dual Algebra Algorithms and Their Application to Kinematics
,”
Multibody Dynamics
(Computational Methods in Applied Sciences, Vol.
12
),
C.
Bottasso
, ed.,
Springer, Dordrecht
, The Netherlands, pp.
207
229
.
17.
Fischer
,
I. S.
, and
Freudenstein
,
F.
,
1984
, “
Internal Force and Moment Transmission in a Cardan Joint With Manufacturing Tolerances
,”
ASME J. Mech. Trans. Autom. Des.
,
106
(
3
), pp.
301
311
.
18.
Cheng
,
H. H.
,
1994
, “
Programming With Dual Numbers and Its Applications in Mechanisms Design
,”
Eng. Comput.
,
10
(
4
), pp.
212
229
.
19.
Brodsky
,
V.
, and
Shoham
,
M.
,
1998
, “
Derivation of Dual Forces in Robot Manipulators
,”
Mech. Mach. Theory
,
33
(
8
), pp.
1241
1248
.
20.
Fischer
,
I. S.
, and
Chu
,
T.
,
2001
, “
Numerical Analysis of Displacements in Multiloop Mechanisms
,”
Mech. Res. Commun.
,
28
(
2
), pp.
127
137
.
21.
Fischer, I. S.
, 2014, “
Accelerations in the Ball Joint
,”
J. Mech. Based Des. Struct. Mach.
,
42
, pp. 1–16.
22.
Perez-Gracia
,
A.
, and
McCarthy
,
J.
,
2006
, “
Kinematic Synthesis of Spatial Serial Chains Using Clifford Algebra Exponentials
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
7
), pp.
953
968
.
23.
Perez-Gracia
,
A.
,
2011
, “
Synthesis of Spatial RPRP Closed Linkages for a Given Screw System
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021009
.
24.
Fischer
,
I. S.
,
2013
, “
Accelerations in the Plane Joint With Application to the Tracta Coupling
,”
Proc Inst. Mech. Eng., Part K
,
227
(
3
), pp.
292
301
.
25.
Bai
,
S.
, and
Angeles
,
J.
,
2015
, “
Synthesis of RCCC Linkages to Visit Four Given Poses
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031004
.
26.
Figliolini
,
G.
,
Rea
,
P.
, and
Angeles
,
J.
,
2015
, “
The Synthesis of the Axodes of RCCC Linkages
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021011
.
27.
Denavit
,
J.
,
1958
, “
Analysis of Mechanisms Based on Matrices of Dual Numbers
,”
VDI Berichte
,
29
, pp.
81
89
.
28.
Bai
,
S.
, and
Angeles
,
J.
,
2008
, “
A Unified Input-Output Analysis of Four-Bar Linkages
,”
Mech. Mach. Theory
,
43
(
2
), pp.
240
251
.
29.
Garcia-Rios
,
I.
,
Palacios-Montufar
,
C.
,
Flores-Campos
,
J. A.
, and
Osorio-Saucedo
,
R.
,
2009
, “
Synthesis of 4C Mechanism for Generation of a Dual Mathematic Function
,”
Appl. Mech. Mater.
,
15
, pp.
67
72
.
You do not currently have access to this content.