Testing of components at higher-than-nominal stress level provides an effective way of reducing the required testing effort for system reliability assessment. Due to various reasons, not all components are directly testable in practice. The missing information of untestable components poses significant challenges to the accurate evaluation of system reliability. This paper proposes a sequential accelerated life testing (SALT) design framework for system reliability assessment of systems with untestable components. In the proposed framework, system-level tests are employed in conjunction with component-level tests to effectively reduce the uncertainty in the system reliability evaluation. To minimize the number of system-level tests, which are much more expensive than the component-level tests, the accelerated life testing (ALT) design is performed sequentially. In each design cycle, testing resources are allocated to component-level or system-level tests according to the uncertainty analysis from system reliability evaluation. The component-level or system-level testing information obtained from the optimized testing plans is then aggregated to obtain the overall system reliability estimate using Bayesian methods. The aggregation of component-level and system-level testing information allows for an effective uncertainty reduction in the system reliability evaluation. Results of two numerical examples demonstrate the effectiveness of the proposed method.

References

References
1.
Nelson
,
W.
,
1980
, “
Accelerated Life Testing-Step-Stress Models and Data Analyses
,”
IEEE Trans. Reliability
,
29
(
2
), pp.
103
108
.
2.
Miller
,
R.
, and
Nelson
,
W.
,
1983
, “
Optimum Simple Step-Stress Plans for Accelerated Life Testing
,”
IEEE Trans. Reliab.
,
32
(
1
), pp.
59
65
.
3.
Candler
,
R. N.
,
Hopcroft
,
M. A.
,
Kim
,
B.
,
Park
,
W.-T.
,
Melamud
,
R.
,
Agarwal
,
M.
,
Yama
,
G.
,
Partridge
,
A.
,
Lutz
,
M.
, and
Kenny
,
T. W.
,
2006
, “
Long-Term and Accelerated Life Testing of a Novel Single-Wafer Vacuum Encapsulation for MEMS Resonators
,”
J. Microelectromech. Syst.
,
15
(
6
), pp.
1446
1456
.
4.
Van Dorp
,
J. R.
,
Mazzuchi
,
T. A.
,
Fornell
,
G. E.
, and
Pollock
,
L. R.
,
1996
, “
A Bayes Approach to Step-Stress Accelerated Life Testing
,”
IEEE Trans. Reliab.
,
45
(
3
), pp.
491
498
.
5.
Zhang
,
Y.
, and
Meeker
,
W. Q.
,
2006
, “
Bayesian Methods for Planning Accelerated Life Tests
,”
Technometrics
,
48
(
1
), pp.
49
60
.
6.
Lee
,
J.
, and
Pan
,
R.
,
2010
, “
Analyzing Step-Stress Accelerated Life Testing Data Using Generalized Linear Models
,”
IIE Trans.
,
42
(
8
), pp.
589
598
.
7.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Accelerated Life Testing (ALT) Design Based on Computational Reliability Analysis
,”
Qual. Reliab. Eng. Int.
,
32
(
7
), pp.
2217
2232
.
8.
Li
,
X.
,
Hu
,
Y.
,
Zhou
,
J.
,
Li
,
X.
, and
Kang
,
R.
,
2018
, “
Bayesian Step Stress Accelerated Degradation Testing Design: A Multi-Objective Pareto-Optimal Approach
,”
Reliab. Eng. Syst. Saf.
,
171
, pp.
9
17
.
9.
Zhu
,
Y.
, and
Elsayed
,
E. A.
,
2013
, “
Design of Accelerated Life Testing Plans Under Multiple Stresses
,”
Nav. Res. Logistics (NRL)
,
60
(
6
), pp.
468
478
.
10.
Zhu
,
Y.
, and
Elsayed
,
E. A.
,
2013
, “
Optimal Design of Accelerated Life Testing Plans Under Progressive Censoring
,”
IIE Trans.
,
45
(
11
), pp.
1176
1187
.
11.
Zhu
,
Y.
, and
Elsayed
,
E. A.
,
2011
, “
Design of Equivalent Accelerated Life Testing Plans Under Different Stress Applications
,”
Qual. Technol. Quant. Manage.
,
8
(
4
), pp.
463
478
.
12.
Xu
,
A.
, and
Tang
,
Y.
,
2015
, “
A Bayesian Method for Planning Accelerated Life Testing
,”
IEEE Trans. Reliab.
,
64
(
4
), pp.
1383
1392
.
13.
Guo
,
H.
, and
Yang
,
X.
,
2007
, “
A Simple Reliability Block Diagram Method for Safety Integrity Verification
,”
Reliab. Eng. Syst. Saf.
,
92
(
9
), pp.
1267
1273
.
14.
Kim
,
M. C.
,
2011
, “
Reliability Block Diagram With General Gates and Its Application to System Reliability Analysis
,”
Ann. Nucl. Energy
,
38
(
11
), pp.
2456
2461
.
15.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2015
, “
Time-Dependent System Reliability Analysis Using Random Field Discretization
,”
ASME J. Mech. Des.
,
137
(
10
), p.
101404
.
16.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Resilience Assessment Based on Time-Dependent System Reliability Analysis
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111404
.
17.
Pandey
,
V.
, and
Mourelatos
,
Z. P.
,
2015
, “
A New Method for Making Design Decisions: Decision Topologies
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031401
.
18.
González
,
A.
,
Piel
,
E.
, and
Gross
,
H.-G.
, 2009, “
A Model for the Measurement of the Runtime Testability of Component-Based Systems
,”
International Conference on Software Testing, Verification and Validation Workshops
ICSTW'09
, Denver, CO, Apr. 1–4, pp.
19
28
.
19.
Chen
,
G.
,
Reddy
,
S. M.
, and
Pomeranz
,
I.
, 2003, “
Procedures for Identifying Untestable and Redundant Transition Faults in Synchronous Sequential Circuits
,”
IEEE
21st International Conference on Computer Design
, San Jose, CA, Oct. 13–15, pp.
36
41
.
20.
Ichalal
,
D.
,
Marx
,
B.
,
Ragot
,
J.
, and
Maquin
,
D.
,
2010
, “
State Estimation of Takagi–Sugeno Systems With Unmeasurable Premise Variables
,”
IET Control Theory Appl.
,
4
(
5
), pp.
897
908
.
21.
Ao
,
D.
,
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
Design of Validation Experiments for Life Prediction Models
,”
Reliab. Eng. Syst. Saf.
,
165
, pp.
22
33
.
22.
Ullah
,
K.
,
Alam
,
I.
, and
Lone
,
S. A.
,
2017
, “
Accelerated Life Testing Design Using Geometric Process for Generalized Rayleigh Distribution With Complete Data
,”
Reliab.: Theory Appl.
,
12
(
4
), pp.
76
83
.http://gnedenko-forum.org/Journal/2017/042017/RTA_4_2017-08.pdf
23.
Gu
,
W.
,
Sun
,
Z.
,
Wei
,
X.
, and
Dai
,
H.
,
2014
, “
A New Method of Accelerated Life Testing Based on the Grey System Theory for a Model-Based Lithium-Ion Battery Life Evaluation System
,”
J. Power Sources
,
267
, pp.
366
379
.
24.
Fard
,
N.
, and
Li
,
C.
,
2009
, “
Optimal Simple Step Stress Accelerated Life Test Design for Reliability Prediction
,”
J. Stat. Plann. Inference
,
139
(
5
), pp.
1799
1808
.
25.
Shen
,
K.-F.
,
Shen
,
Y.-J.
, and
Leu
,
L.-Y.
,
2011
, “
Design of Optimal Step–Stress Accelerated Life Tests Under Progressive Type I Censoring With Random Removals
,”
Qual. Quantity
,
45
(
3
), pp.
587
597
.
26.
Guo
,
H.
, and
Mettas
,
A.
,
2007
, “
Improved Reliability Using Accelerated Degradation & Design of Experiments
,”
IEEE
Annual Reliability and Maintainability Symposium
, Orlando, FL, Jan. 22–25, pp.
446
450
.
27.
Escobar
,
L. A.
, and
Meeker
,
W. Q.
,
2006
, “
A Review of Accelerated Test Models
,”
Stat. Sci.
,
21
(
4
), pp.
552
577
.
28.
Van Dorp
,
J. R.
, and
Mazzuchi
,
T. A.
,
2005
, “
A General Bayes Weibull Inference Model for Accelerated Life Testing
,”
Reliab. Eng. Syst. Saf.
,
90
(
2–3
), pp.
140
147
.
29.
Meeker
,
W. Q.
,
Escobar
,
L. A.
, and
Hong
,
Y.
,
2009
, “
Using Accelerated Life Tests Results to Predict Product Field Reliability
,”
Technometrics
,
51
(
2
), pp.
146
161
.
30.
Pascual
,
F.
,
2010
, “
Accelerated Life Test Planning With Independent Lognormal Competing Risks
,”
J. Stat. Plann. Inference
,
140
(
4
), pp.
1089
1100
.
31.
Wu
,
S. J.
,
Lin
,
Y. P.
, and
Chen
,
Y. J.
,
2006
, “
Planning Step-Stress Life Test With Progressively Type I Group-Censored Exponential Data
,”
Statistica Neerlandica
,
60
(
1
), pp.
46
56
.
32.
Zhao
,
W.
, and
Elsayed
,
E.
,
2004
, “
An Accelerated Life Testing Model Involving Performance Degradation
,”
Annual Symposium Reliability and Maintainability
(
RAMS
), Los Angeles, CA, Jan. 26–29, pp.
324
329
.
33.
Pascual
,
F.
,
2008
, “
Accelerated Life Test Planning With Independent Weibull Competing Risks
,”
IEEE Trans. Reliab.
,
57
(
3
), pp.
435
444
.
34.
Pascual
,
F.
,
2007
, “
Accelerated Life Test Planning With Independent Weibull Competing Risks With Known Shape Parameter
,”
IEEE Trans. Reliab.
,
56
(
1
), pp.
85
93
.
35.
Zhao
,
W.
, and
Elsayed
,
E. A.
,
2005
, “
A General Accelerated Life Model for Step-Stress Testing
,”
IIE Trans.
,
37
(
11
), pp.
1059
1069
.
36.
Teng
,
S.-L.
, and
Yeo
,
K.-P.
,
2002
, “
A Least-Squares Approach to Analyzing Life-Stress Relationship in Step-Stress Accelerated Life Tests
,”
IEEE Trans. Reliab.
,
51
(
2
), pp.
177
182
.
37.
Huan
,
X.
, and
Marzouk
,
Y. M.
,
2013
, “
Simulation-Based Optimal Bayesian Experimental Design for Nonlinear Systems
,”
J. Comput. Phys.
,
232
(
1
), pp.
288
317
.
38.
Hu
,
Z.
,
Ao
,
D.
, and
Mahadevan
,
S.
,
2017
, “
Calibration Experimental Design Considering Field Response and Model Uncertainty
,”
Comput. Methods Appl. Mech. Eng.
,
318
, pp.
92
119
.
39.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
40.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2016
, “
Global Sensitivity Analysis-Enhanced Surrogate (GSAS) Modeling for Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
53
(
3
), pp.
501
521
.
41.
Hu
,
Z.
,
Zhu
,
Z.
, and
Du
,
X.
,
2018
, “
Time-Dependent System Reliability Analysis for Bivariate Responses
,”
ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.
,
4
(
3
), p.
031002
.
42.
Yu
,
S.
, and
Wang
,
Z.
,
2018
, “
A Novel Time-Variant Reliability Analysis Method Based on Failure Processes Decomposition for Dynamic Uncertain Structures
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051401
.
43.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
44.
Vrugt
,
J. A.
,
Ter Braak
,
C.
,
Diks
,
C.
,
Robinson
,
B. A.
,
Hyman
,
J. M.
, and
Higdon
,
D.
,
2009
, “
Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution With Self-Adaptive Randomized Subspace Sampling
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
10
(
3
), pp.
273
290
.http://dare.uva.nl/search?identifier=4db85bf2-71b0-4536-8746-0c7f86e6084e
45.
Nummiaro
,
K.
,
Koller-Meier
,
E.
, and
Van Gool
,
L.
,
2003
, “
An Adaptive Color-Based Particle Filter
,”
Image Vision Comput.
,
21
(
1
), pp.
99
110
.
46.
Hu
,
Z.
,
Mahadevan
,
S.
, and
Ao
,
D.
,
2018
, “
Uncertainty Aggregation and Reduction in Structure–Material Performance Prediction
,”
Comput. Mech.
,
61
(1-2), pp.
237
257
.
47.
Huang
,
D.
,
Allen
,
T. T.
,
Notz
,
W. I.
, and
Zeng
,
N.
,
2006
, “
Global Optimization of Stochastic Black-Box Systems Via Sequential Kriging Meta-Models
,”
J. Global Optim.
,
34
(
3
), pp.
441
466
.
48.
Zhu
,
Z.
, and
Du
,
X.
,
2016
, “
Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121403
.
49.
Giannakoglou
,
K.
,
2002
, “
Design of Optimal Aerodynamic Shapes Using Stochastic Optimization Methods and Computational Intelligence
,”
Prog. Aerosp. Sci.
,
38
(
1
), pp.
43
76
.
50.
Mockus
,
J.
,
1994
, “
Application of Bayesian Approach to Numerical Methods of Global and Stochastic Optimization
,”
J. Global Optim.
,
4
(
4
), pp.
347
365
.
51.
Pandey
,
V.
,
Mourelatos
,
Z.
,
Nikolaidis
,
E.
,
Castanier
,
M.
, and
Lamb
,
D.
,
2012
, “
System Failure Identification Using Linear Algebra: Application to Cost-Reliability Tradeoffs Under Uncertain Preferences
,”
SAE
Paper No. 0148-7191
.
You do not currently have access to this content.