A Jacobian-based topology optimization method is recently proposed for compliant parallel mechanisms (CPMs), in which the CPMs' Jacobian matrix and characteristic stiffness are optimized simultaneously to achieve kinematic and stiffness requirement, respectively. Lately, it is found that the characteristic stiffness fails to ensure a valid topology result in some particular cases. To solve this problem, an improved stiffness evaluation based on the definition of stiffness is adopted in this paper. This new stiffness evaluation is verified and compared with the characteristic stiffness by using several design examples. In addition, several typical benchmark problems (e.g., displacement inverter, amplifier, and redirector) are solved by using the Jacobian-based topology optimization method to show its general applicability.

References

References
1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
3.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision–Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.
4.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
N.
,
1994
, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
ASME
Paper No. DSC-55-2.https://www.researchgate.net/publication/239061970_Strategies_for_Systematic_synthesis_of_Compliant_MEMS
5.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
6.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
(3), pp.
535
559
.
7.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
8.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
121
125
.
9.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization–Part I: One-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49
), pp.
6577
6604
.
10.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization–Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49
), pp.
6605
6627
.
11.
Saxena
,
A.
,
2005
, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscip. Optim.
,
30
(
6
), pp.
477
490
.
12.
Lu
,
K.-J.
, and
Kota
,
S.
,
2006
, “
Topology and Dimensional Synthesis of Compliant Mechanisms Using Discrete Optimization
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1080
1091
.
13.
Zhu
,
B.
,
Zhang
,
X.
, and
Wang
,
N.
,
2013
, “
Topology Optimization of Hinge-Free Compliant Mechanisms With Multiple Outputs Using Level Set Method
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
659
672
.
14.
Jang
,
G.-W.
,
Lee
,
S.
,
Kim
,
Y. Y.
, and
Sheen
,
D.
,
2005
, “
Topology Optimization Using Non-Conforming Finite Elements: Three-Dimensional Case
,”
Int. J. Numer. Methods Eng.
,
63
(
6
), pp.
859
875
.
15.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45
), pp.
2876
2891
.
16.
Ansola
,
R.
,
Veguería
,
E.
,
Maturana
,
A.
, and
Canales
,
J.
,
2010
, “
3D Compliant Mechanisms Synthesis by a Finite Element Addition Procedure
,”
Finite Elem. Anal. Des.
,
46
(
9
), pp.
760
769
.
17.
Jin
,
M.
,
Zhang
,
X.
,
Zhu
,
B.
, and
Wang
,
N.
,
2013
, “
Spring-Joint Method for Topology Optimization of Planar Passive Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
26
(
6
), pp.
1063
1072
.
18.
Jin
,
M.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2014
, “
A Numerical Method for Static Analysis of Pseudo-Rigid-Body Model of Compliant Mechanisms
,”
Proc. Inst. Mech. Eng., Part C.
,
28
(
17
), pp.
3170
3177
.
19.
Jin
,
M.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2014
, “
Design of Compliant Mechanisms Using a Pseudo-Rigid-Body Model Based Topology Optimization Method
,”
ASME
Paper No. DETC2014-34325.
20.
Lum
,
G. Z.
,
Teo
,
T. J.
,
Yang
,
G.
,
Yeo
,
S. H.
, and
Sitti
,
M.
,
2013
, “
A Hybrid Topological and Structural Optimization Method to Design a 3-Dof Planar Motion Compliant Mechanism
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Wollongong, Australia, July 9–12, pp.
247
254
.
21.
Lum
,
G. Z.
,
Teo
,
T. J.
,
Yang
,
G.
,
Yeo
,
S. H.
, and
Sitti
,
M.
,
2015
, “
Integrating Mechanism Synthesis and Topological Optimization Technique for Stiffness-Oriented Design of a Three Degrees-of-Freedom Flexure-Based Parallel Mechanism
,”
Precis. Eng.
,
39
, pp.
125
133
.
22.
Lum
,
G. Z.
,
Teo
,
T. J.
,
Yeo
,
S. H.
,
Yang
,
G.
, and
Sitti
,
M.
,
2015
, “
Structural Optimization for Flexure-Based Parallel Mechanisms-Towards Achieving Optimal Dynamic and Stiffness Properties
,”
Precis. Eng.
,
42
, pp.
195
207
.
23.
Jin
,
M.
, and
Zhang
,
X.
,
2016
, “
A New Topology Optimization Method for Planar Compliant Parallel Mechanisms
,”
Mech. Mach. Theory
,
95
(
1
), pp.
42
58
.
24.
Yong
,
Y. K.
, and
Lu
,
T.-F.
,
2009
, “
Kinetostatic Modeling of 3-RRR Compliant Micro-Motion Stages With Flexure Hinges
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1156
1175
.
25.
Gao
,
Z.
, and
Zhang
,
D.
,
2010
, “
Design, Analysis and Fabrication of a Multidimensional Acceleration Sensor Based on Fully Decoupled Compliant Parallel Mechanism
,”
Sens. Actuators A
,
163
(
1
), pp.
418
427
.
26.
Chen
,
S.
, and
Wang
,
M. Y.
,
2007
, “
Designing Distributed Compliant Mechanisms With Characteristic Stiffness
,”
ASME
Paper No. DETC2007-34437.
27.
Wang
,
M. Y.
, and
Chen
,
S.
,
2009
, “
Compliant Mechanism Optimization: Analysis and Design With Intrinsic Characteristic Stiffness
,”
Mech. Based Des. Struct. Mach.
,
37
(
2
), pp.
183
200
.
28.
Wang
,
M. Y.
,
2009
, “
A Kinetoelastic Formulation of Compliant Mechanism Optimization
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021011
.
29.
Kim
,
C. J.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
,
130
(
2
), pp.
284
284
.
30.
Zhang
,
Y.
,
Su
,
H.-J.
, and
Liao
,
Q.
,
2014
, “
Mobility Criteria of Compliant Mechanisms Based on Decomposition of Compliance Matrices
,”
Mech. Mach. Theory
,
79
, pp.
80
93
.
31.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
,
2000
, “
Kinematic Analysis of Translational 3-DOF Micro Parallel Mechanism Using Matrix Method
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Takamatsu, Japan, Oct. 31–Nov. 5, pp.
786
792
.
32.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
Berlin
.
33.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
645
657
.
34.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
35.
Deepak
,
S. R.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G.
,
2009
, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant
,”
ASME J. Mech. Rob.
,
1
(
1
), p.
011003
.
You do not currently have access to this content.