This paper concerns the experimental validation of two surrogate models through a benchmark study involving two different variable shape mould prototype systems. The surrogate models in question are different methods based on kriging and proper orthogonal decomposition (POD), which were developed in previous work. Measurement data used in the benchmark study are obtained using digital image correlation (DIC). For determining the variable shape mould configurations used for the training, and test sets used in the study, sampling is carried out using a novel constrained nested orthogonal-maximin Latin hypercube approach. This sampling method allows for generating a space filling and high-quality sample plan that respects mechanical constraints of the variable shape mould systems. Through the benchmark study, it is found that mechanical freeplay in the modeled system is severely detrimental to the performance of the studied surrogate models. By comparing surrogate model performance for the two variable shape mould systems, and through a numerical study involving simple finite element models, the underlying cause of this effect is explained. It is concluded that for a variable shape mould prototype system with a small degree of mechanical freeplay, the benchmarked surrogate models perform very well.

References

References
1.
Christensen
,
E. T.
,
Forrester
,
A. I. J.
,
Lund
,
E.
, and
Lindgaard
,
E.
, 2017, “
Developing Meta-Models for Fast and Accurate Prediction of the Draping of Physical Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
, submitted.
2.
Munro
,
C.
, and
Walczyk
,
D. F.
,
2007
, “
Reconfigurable Pin-Type Tooling: A Survey of Prior Art and Reduction to Practice
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
551
565
.
3.
Liu
,
C.
,
Li
,
M.
, and
Fu
,
W.
,
2008
, “
Principles and Apparatus of Multi-Point Forming for Sheet Metal
,”
Int. J. Adv. Manuf. Technol.
,
35
(
11–12
), pp.
1227
1233
.
4.
Rietbergen
,
D.
,
2008
, “
Adjustable Mould for Architectural Freely Curved Glass
,”
Challenging Glass Conference
, Delft, The Netherlands, May 22–23, pp. 523–530.
5.
Walczyk
,
D. F.
,
Hosford
,
J. F.
, and
Papazian
,
J. M.
,
2003
, “
Using Reconfigurable Tooling and Surface Heating for Incremental Forming of Composite Aircraft Parts
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
333
343
.
6.
Grünewald
,
S.
,
Janssen
,
B.
,
Schipper
,
H. R.
,
Vollers
,
K. J.
, and
Walraven
,
J. C.
,
2012
, “
Deliberate Deformation of Concrete After Casting
,”
Second International Conference on Flexible Formwork
(
ICFF
), Bath, UK, June 27–29, Paper No. 12.https://repository.tudelft.nl/islandora/object/uuid:c46bd896-432d-4430-b1eb-8770dfe4724f?collection=research
7.
Kalogirou
,
S. A.
,
2001
, “
Artificial Neural Networks in Renewable Energy Systems Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
373
401
.
8.
Carr
,
J. C.
,
Fright
,
W. R.
, and
Beatson
,
R. K.
,
1997
, “
Surface Interpolation With Radial Basis Functions for Medical Imaging
,”
IEEE Trans. Med. Imaging
,
16
(
1
), pp.
96
107
.
9.
Klass
,
V.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2015
, “
Capturing Lithium-Ion Battery Dynamics With Support Vector Machine-Based Battery Model
,”
J. Power Sources
,
298
, pp.
92
101
.
10.
Shi
,
X.
,
Teixeira
,
Â.
P.,
Zhang
,
J.
, and
Soares
,
C. G.
,
2014
, “
Kriging Response Surface Reliability Analysis of a Ship-Stiffened Plate With Initial Imperfections
,”
Struct. Infrastruct. Eng.
,
11
(
11
), pp.
1450
1465
.
11.
Hamdaoui
,
M.
,
Oujebbour
,
F.-Z.
,
Habbal
,
A.
,
Breitkopf
,
P.
, and
Villon
,
P.
,
2014
, “
Kriging Surrogates for Evolutionary Multi-Objective Optimization of CPU Intensive Sheet Metal Forming Applications
,”
Int. J. Mater. Form.
,
8
(
3
), pp.
469
480
.
12.
Montgomery
,
D. C.
,
2012
,
Design and Analysis of Experiments
,
8th ed.
,
Wiley
, Hoboken, NJ.
13.
MacKay
,
D. J. C.
,
2004
,
Information Theory, Inference, and Learning Algorithms
,
Cambridge University Press, Cambridge, UK
.
14.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
15.
Smola
,
A.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
16.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley, Hoboken, NJ
.
17.
Shlens
,
J.
,
2014
, “A Tutorial on Principal Component Analysis,” e-print
arXiv:1404.1100
.https://arxiv.org/abs/1404.1100
18.
Xiao
,
M.
,
Breitkopf
,
P.
,
Coelho
,
R. F.
,
Knopf-Lenoir
,
C.
,
Sidorkiewicz
,
M.
, and
Villon
,
P.
,
2010
, “
Model Reduction by CPOD and Kriging
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
555
574
.
19.
Rayas-Sanchez
,
J. E.
,
2004
, “
EM-Based Optimization of Microwave Circuits Using Artificial Neural Networks: The State-of-the-Art
,”
IEEE Trans. Microwave Theory Tech.
,
52
(
1
), pp.
420
435
.
20.
Joseph
,
V. R.
, and
Ying
,
H.
,
2008
, “
Orthogonal-Maximin Latin Hypercube Designs
,”
Stat. Sin.
,
18
(
1
), pp.
171
186
.http://www3.stat.sinica.edu.tw/statistica/oldpdf/A18n17.pdf
21.
Christensen
,
E. T.
,
Lund
,
E.
, and
Lindgaard
,
E.
, “
Constrained Orthogonal-Maximin Nested Latin Hypercube Sampling
,”
Technometrics
, submitted.
22.
Jones
,
R. M.
,
1999
,
Mechanics of Composite Materials
, Vol. 2,
2nd ed.
,
Taylor & Francis, Abingdon, UK
.
23.
Alexandrov
,
N. M.
,
Alexandrov
,
N. M.
,
Lewis
,
R. M.
,
Gumbert
,
C. R.
,
Green
,
L. L.
, and
Newman
,
P. A.
,
2000
, “Optimization With Variable-Fidelity Models Applied to Wing Design,” NASA Langley Research Center, Hampton, VA, ICASE Report No.
NASA/CR-1999-209826
.http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjs74XGiObWAhUlxYMKHW8RA7YQFgglMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fcgi-bin%2FGetTRDoc%3FAD%3DADA371451&usg=AOvVaw15l7ZSfdh2cdJo0AnxqriA
24.
Marduel
,
X.
,
Tribes
,
C.
, and
Trépanier
,
J.-Y.
,
2006
, “
Variable-Fidelity Optimization: Efficiency and Robustness
,”
Optim. Eng.
,
7
(
4
), pp.
479
500
.
25.
Le Gratiet
,
L.
,
2011
, “
Building Kriging Models Using Hierarchical Codes With Different Levels of Accuracy
,”
11th Annual Meeting of the European Network for Business and Industrial Statistics
, Coimbra, Portugal, Sept. 11–15, pp. 1–8.https://hal-univ-diderot.archives-ouvertes.fr/hal-00654710/document
26.
Fernández-Godino
,
M. G.
,
Park
,
C.
,
Kim
,
N.-H.
, and
Haftka
,
R. T.
,
2016
, “
Review of Multi-Fidelity Models
,” e-print
arXiv:1609.07196
https://arxiv.org/abs/1609.07196.
27.
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
28.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2015
, “Optimization Codes,” accessed Oct. 10, 2017, https://optimizationcodes.wordpress.com
29.
Turner
,
C. J.
, and
Crawford
,
R. H.
,
2009
, “
N-Dimensional Nonuniform Rational B-Splines for Metamodeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
3
), p.
031002
.
30.
Qian
,
P. Z. G.
,
2009
, “
Nested Latin Hypercube Designs
,”
Biometrika
,
96
(
4
), pp.
957
970
.
31.
Morris
,
M. D.
, and
Mitchell
,
T. J.
,
1995
, “
Exploratory Designs for Computational Experiments
,”
J. Stat. Plann. Inference
,
43
(
3
), pp.
381
402
.
You do not currently have access to this content.