In this paper, we generalize Miura origami and propose a method for analyzing a generalized Miura origami structure. Morphological properties of the generalized Miura origami element during the deploy motion are analyzed using the proposed method, which mainly utilizes the principle of spherical trigonometry and is verified in the folding limit state. The longitudinal length, horizontal length, and height of the generalized Miura origami element are defined and obtained using the proposed method. Results show the relationship between the range of deployment and the element parameters as well as the changes of the folding plane angles in the deployment process. During the deploy motion, both the longitudinal and horizontal length increased while the height decreased. However, the change speed of horizontal length decreased, whereas those of longitudinal length and height initially increased and then decreased. The increment of the folding element angle difference Δα reduced folding range and put off the severe change time of longitudinal length and height. The length parameters Ka, Kb, and Kab had slight effects on the results, but their changes did not alter the change trends. These results are useful to the design of fold structure and analysis of errors in standard Miura-ori structures.

References

References
1.
Forbes
,
P.
,
2005
,
The Gecko's Foot—How Scientists Are Taking a Leaf From Nature's Book
,
Harper Perennial
,
London
.
2.
Tachi
,
T.
,
2009
, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami
,”
International Association for Shell and Spatial Structures Symposium
(
IASS
), Valencia, Spain, Sept. 28–Oct. 2, pp. 1–8.http://www.tsg.ne.jp/TT/cg/RigidFoldableQuadMeshOrigami_tachi_IASS2009.pdf
3.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.
4.
Heimbs
,
S.
,
2013
, “
Foldcore Sandwich Structures and Their Impact Behavior: An Overview
,”
Solid Mechanics and Its Applications
, Vol.
192
, Springer, Cham, Switzerland, pp.
491
544
.
5.
Ma
,
J.
,
2011
, “
Thin-Walled Tubes With Pre-Folded Origami Patterns as Energy Absorption Devices
,”
Ph.D. thesis
, University of Oxford, Oxford, UK.http://www.eng.ox.ac.uk/civil/publications/theses/ma-1
6.
Nishiyama
,
Y.
,
2012
, “
Miura Folding: Applying Origami to Space Exploration
,”
Int. J. Pure Appl. Math.
,
79
(
2
), pp.
269
279
.http://www.osaka-ue.ac.jp/zemi/nishiyama/math2010/miura.pdf
7.
Song
,
Z.
,
Ma
,
T.
,
Tang
,
R.
,
Cheng
,
Q.
,
Wang
,
X.
,
Kirshnaraju
,
D.
,
Panat
,
R.
,
Chan
,
C. K.
,
Yu
,
H.
, and
Jiang
,
H.
,
2014
, “
Origami Lithium-Ion Batteries
,”
Nat. Commun.
,
5
, p. 3140.
8.
Tolley
,
M. T.
,
Felton
,
S. M.
,
Miyashita
,
S.
,
Aukes
,
D.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2014
, “
Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating
,”
Smart Mater. Struct.
,
23
(
9
), p.
094006
.https://doi.org/10.1088/0964-1726/23/9/094006
9.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.
10.
Lv
,
C.
, Krishnaraju, D., Konjevod, G., Yu, H., and Jiang, H.,
2014
, “
Origami Based Mechanical Metamaterials
,”
Sci. Rep.
,
4
, p. 5979.
11.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
.
12.
Silverberg
,
J. L.
,
Evans
,
A. E.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
13.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci.
,
112
(
40
), pp.
12321
12326
.
14.
Cai
,
J.
,
Zhang
,
Y.
,
Xu
,
Y.
,
Zhou
,
Y.
, and
Feng
,
J.
,
2016
, “
The Foldability of Cylindrical Foldable Structures Based on Rigid Origami
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031401
.
15.
Hull
,
T.
,
2006
,
Project Origami
,
A. K. Peter
,
Wellesley, MA
.
16.
Huffman
,
D.
,
1976
, “
Curvature and Creases: A Primer on Paper
,”
IEEE Trans. Comput.
,
C-25
(
10
), pp.
1010
1019
.
17.
Jianguo
,
C.
,
Deng
,
X.
, and
Feng
,
J.
,
2014
, “
Morphology Analysis of a Foldable Kirigami Structure Based on Miura Origami
,”
Smart Mater. Struct.
,
9
(
23
), p.
094011
.https://doi.org/10.1088/0964-1726/23/9/094011
18.
Bain
,
I.
,
1980
, “
The Miura-Ori Map
,”
New Scientist
, London. http://www.britishorigami.info/academic/miura.php
19.
Cai
,
J.
,
Xu
,
Y.
, and
Feng
,
J.
,
2013
, “
Geometric Analysis of a Foldable Barrel Vault With Origami
,”
ASME J. Mech. Des.
,
135
(
11
), p.
114501
.
You do not currently have access to this content.