V-polyhedra is a Kokotsakis-type flat foldable rigid origami with increasing application in the engineering field. Currently, researches on origami mainly focused on foldability and mobility. In order to apply V-polyhedra in practical engineering, the analysis of kinematic characteristics is in need. This paper presents a displacement analysis methodology for the generic point belonging to any surfaces of foldable V-polyhedra. The rigid foldability of four-faced V-polyhedra and that of nine-faced V-polyhedra were discussed first. Then, the corresponding mathematical models are established with the rotating vector model constructed by dual quaternions. Finally, the correctness of the proposed method is verified through application of a symmetric pair of nine-faced V-polyhedra.

References

References
1.
Demaine
,
E. D.
, and
O'Rourke
,
J.
,
2007
,
Geometric Folding Algorithms
,
Cambridge University Press
,
New York
.
2.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng. Part C
,
230
(
14
), pp.
2345
2362
.
3.
Dai
,
J. S.
, and
Rees
Jones
,
J.
,
2002
, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent
,”
Proc. Inst. Mech. Eng. Part C
,
216
(
10
), pp.
959
970
.
4.
Wu
,
W. N.
, and
You
,
Z.
,
2010
, “
Modelling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc. A
,
466
(
2119
), pp.
2155
2174
.
5.
Cai
,
J. G.
,
Zhang
,
Y. T.
,
Xu
,
Y. X.
,
Zhou
,
Y.
, and
Feng
,
J.
,
2016
, “
The Foldability of Cylindrical Foldable Structures Based on Rigid Origami
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031401
.
6.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031005
.
7.
Karpenkov
,
O. N.
,
2010
, “
On the Flexibility of Kokotsakis Meshes
,”
Geometriae Dedicata
,
147
(
1
), pp.
15
28
.
8.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spatial Struct. (IASS)
,
50
(
3
), pp.
173
179
.
9.
Hamann
,
M.
,
Posselt
,
N.
,
Lin
,
S.
,
Modler
,
K. H.
, and
Weiss
,
G.
,
2011
, “
Bendable 9-Faced Polyhedra: Generation, Classification and Application
,”
13th IFToMM World Congress
, Guanajuato, Mexico, June 19–23, Paper No. IMD-123.
10.
Bowen
,
L. A.
,
Baxter
,
W. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
A Position Analysis of Coupled Spherical Mechanisms Found in Action Origami
,”
Mech. Mach. Theory
,
77
, pp.
13
24
.
11.
Cai
,
J. G.
,
Qian
,
Z. L.
,
Jiang
,
C.
,
Feng
,
J.
, and
Xu
,
Y. X.
,
2016
, “
Mobility and Kinematic Analysis of Foldable Plate Structures Based on Rigid Origami
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064502
.
12.
Sauer
,
R.
, and
Graf
,
H.
,
1931
, “
Über Flächenverbiegung in Analogie zur Verknickung Offener Facettenflache
,”
Math. Ann.
,
105
(
1
), pp.
499
535
.
13.
Schief
,
W. K.
,
Bobenko
,
A. I.
, and
Hoffmann
,
T.
,
2008
, “
On the Integrability of Infinitesimal and Finite Deformations of Polyhedral Surfaces
,”
Discrete Differential Geometry
,
Birkhäuser
,
Basel, Switzerland
, pp.
67
93
.
14.
Sauer
,
R.
,
1970
,
Differenzengeometrie
,
Springer
,
Berlin
.
15.
Izmestiev
,
I.
,
2017
, “
Classification of Flexible Kokotsakis Polyhedra With Quadrangular Base
,”
Int. Math. Res. Notices
,
2017
(
3
), pp.
715
808
.
16.
Yang
,
A. T.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
,
31
(
2
), pp.
300
308
.
17.
Posselt
,
N.
,
2010
, “
Synthese von Zwangläufig Beweglichen 9-Gliedrigen Vierecksflachen
,” Master dissertation,
TU Dresden
,
Dresden, Germany
.
18.
Kokotsakis
,
A.
,
1933
, “
Über Bewegliche Polyeder
,”
Math. Ann.
,
107
(
1
), pp.
627
647
.
You do not currently have access to this content.