Noise, vibration, and harshness performances are always concerns in design of an automotive belt drive system. The design problem of the automotive belt drive system requires the minimum transverse vibration of each belt span and minimum rotational vibrations of each pulley and the tensioner arm at the same time, with constraints on tension fluctuations in each belt span. The autotensioner is a key component to maintain belt tensions, avoid belt slip, and absorb vibrations in the automotive belt drive system. In this work, a dynamic adaptive particle swarm optimization and genetic algorithm (DAPSO-GA) is proposed to find an optimum design of an autotensioner to solve this design problem and achieve design targets. A dynamic adaptive inertia factor is introduced in the basic particle swarm optimization (PSO) algorithm to balance the convergence rate and global optimum search ability by adaptively adjusting the search velocity during the search process. genetic algorithm (GA)-related operators including a selection operator with time-varying selection probability, crossover operator, and n-point random mutation operator are incorporated in the PSO algorithm to further exploit optimal solutions generated by the PSO algorithm. These operators are used to diversify the swarm and prevent premature convergence. The objective function is established using a weighted-sum method, and the penalty function method is used to deal with constraints. Optimization on an example automotive belt drive system shows that the system vibration is greatly improved after optimization compared with that of its original design.

References

References
1.
Song
,
G.
,
Chandrashekhara
,
K.
,
Breig
,
W. F.
,
Klein
,
D. L.
, and
Oliver
,
L. R.
,
2005
, “
Analysis of Cord-Reinforced Poly-Rib Serpentine Belt Drive With Thermal Effect
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1198
1206
.
2.
Zhu
,
H.
,
Hu
,
Y.
,
Zhu
,
W. D.
, and
Long
,
H.
, 2017, “
Dynamic Response of an Engine Front End Accessory Belt Drive System With Pulley Eccentricities Via Two Spatial Discretization Methods
,”
Proc. Inst. Mech. Eng., Part D
, epub.
3.
Kong
,
L.
, and
Parker
,
R. G.
,
2003
, “
Equilibrium and Belt-Pulley Vibration Coupling in Serpentine Belt Drives
,”
ASME J. Appl. Mech.
,
70
(
5
), pp.
739
750
.
4.
Parker
,
R. G.
,
2004
, “
Efficient Eigensolution, Dynamic Response, and Eigensentivity of Serpentine Belt Drives
,”
J. Sound Vib.
,
270
(
1
), pp.
15
38
.
5.
Shieh
,
C.-J.
, and
Chen
,
W.-H.
,
2002
, “
Effect of Angular Speed on Behavior of a V-Belt Drive System
,”
Int. J. Mech. Sci.
,
44
(
9
), pp.
1879
1892
.
6.
Leamy
,
M. J.
, and
Perkins
,
N. C.
,
1998
, “
Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
909
916
.
7.
Beikmann
,
R.
,
Perkins
,
N.
, and
Ulsory
,
A.
,
1997
, “
Design and Analysis of Automotive Belt Drive Systems for Steady State Performance
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
162
168
.
8.
Nouri
,
M.
, and
Zu
,
J. W.
,
2002
, “
Dynamic Analysis and Optimization of Tensioner in Automotive Serpentine Belt Drive Systems
,”
ASME
Paper No. DETC2002/DAC-34120.
9.
Anh
,
N. D.
, and
Nguyen
,
N. X.
,
2016
, “
Research on the Design of Non-Traditional Dynamic Vibration Absorber for Damped Structures Under Ground Motion
,”
J. Mech. Sci. Technol.
,
30
(
2
), pp.
593
602
.
10.
Gao
,
X.
,
Chen
,
Q.
, and
Liu
,
X.
,
2016
, “
Nonlinear Dynamics and Design for a Class of Piecewise Smooth Vibration Isolation System
,”
Nonlinear Dyn.
,
84
(
3
), pp.
1715
1726
.
11.
Du
,
J.
, and
Olhoff
,
N.
,
2010
, “
Topological Design of Vibrating Structures With Respect to Optimum Sound Pressure Characteristics in a Surrounding Acoustic Medium
,”
Struct. Multidiscip. Optim.
,
42
(
1
), pp.
43
54
.
12.
Jensen
,
J. S.
, and
Pedersen
,
N. L.
,
2006
, “
On Maximal Eigenfrequency Separation-Material in Two-Material Structures: The 1D and 2D Scalar Cases
,”
J. Sound Vib.
,
289
(
4
), pp.
967
986
.
13.
Sobieszczanski-Sobieski
,
J.
,
Kodiyalam
,
S.
, and
Yang
,
R. Y.
,
2001
, “
Optimization of Car Body Under Constraints of Noise, Vibration, and Harshness (NVH), and Crash
,”
Struct. Multidiscip. Optim.
,
22
(
4
), pp.
295
306
.
14.
Hou
,
Z. C.
,
Lao
,
Y. X.
, and
Lu
,
Q. H.
,
2008
, “
Sensitivity Analysis and Parameter Optimization for Vibration Reduction of Undamped Multi-Ribbed Belt Drive Systems
,”
J. Sound Vib.
,
317
(
3
), pp.
591
607
.
15.
Eberhart
,
R. C.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Sixth International Symposium on Micro Machine and Human Science
(
MHS
), Nagoya, Japan, Oct. 4–6, Vol.
1
, pp.
39
43
.
16.
Holland
,
J. H.
,
1962
, “
Outline for a Logical Theory of Adaptive Systems
,”
J. ACM
,
9
(
3
), pp.
297
314
.
17.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
, pp.
447
455
.
18.
Shangguan
,
W. B.
, and
Zeng
,
X. K.
,
2013
, “
Modeling and Validation of Rotational Vibration Responses for Accessory Drive System—Part II: Simulations and Analyses
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031003
.
19.
Guedria
,
N. B.
,
2016
, “
Improved Accelerated PSO Algorithm for Mechanical Engineering Optimization Problems
,”
Appl. Soft Comput.
,
40
, pp.
455
467
.
20.
Coello
,
C. A. C.
,
2002
, “
Theoretical and Numerical Constraint-Handling Techniques Used With Evolutionary Algorithms: A Survey of the State of the Art
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
11
), pp.
1245
1287
.
21.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
IEEE
International Conference on Neural Networks, Perth, Australia, Nov. 27–Dec. 1, Vol.
IV
, pp.
1942
1948
.https://www.cs.tufts.edu/comp/150GA/homeworks/hw3/_reading6%201995%20particle%20swarming.pdf
22.
Perez
,
R. E.
, and
Behdinan
,
K.
,
2007
,
Particle Swarm Optimization in Structural Design
,
F. T. S.
Chan
and
M. K.
Tiwari
, eds.,
Itech Education and Publishing
,
Vienna, Austria
.
23.
Joshua
,
T. B.
,
Xin
,
J.
, and
Sunil
,
K. A.
,
2016
, “
Optimal Design of Cable-Driven Manipulators Using Particle Swarm Optimization
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041003
.
24.
Haupt
,
R. L.
, and
Haupt
,
S. E.
,
2004
,
Practical Genetic Algorithm
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
25.
Davis
,
L.
,
1991
,
Handbook of Genetic Algorithms
,
Van Nostrand Reinhold
,
New York
.
26.
Shi
,
Y.
, and
Eberhart
,
R.
,
1999
, “
Empirical Study of Particle Swarm Optimization
,” IEEE Congress on Evolutionary Computation (
CEC
), Washington, DC, July 6–9, pp.
1945
1950
.
27.
Ratnaweera
,
A.
,
Halgamuge
,
S. K.
, and
Watson
,
H. C.
,
2004
, “
Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients
,”
IEEE Trans. Evol. Comput.
,
8
(
3
), pp.
240
255
.
28.
Mahmoodabadi
,
M. J.
, and
Bisheban
,
M.
,
2014
, “
An Online Optimal Linear State Feedback Controller Based on MLS Approximations and a Novel Straightforward PSO Algorithm
,”
Trans. Inst. Meas. Control
,
36
(8), pp. 1132–1142.
29.
Suganthan
,
P. N.
,
1999
, “
Particle Swarm Optimiser With Neighbourhood Operator
,” IEEE Congress on Evolutionary Computation (
CEC
), Washington, DC, July 6–9, Vol.
3
, pp.
1958
1962
.
30.
Kennedy
,
J.
,
2000
, “
Stereotyping: Improving Particle Swarm Performance With Cluster Analysis
,” IEEE Congress on Evolutionary Computation (
CEC
), La Jolla, CA, July 16–19, Vol.
2
, pp.
1507
1512
.
31.
Shi
,
Y.
, and
Eberhart
,
R. C.
,
1998
, “
A Modified Particle Swarm Optimizer
,” IEEE Congress on Evolutionary Computation (
CEC
), Anchorage, AK, May 4–9, pp.
69
73
.
32.
Kennedy
,
J.
, and
Mendes
,
R.
,
2002
, “
Population Structure and Particle Swarm Performance
,” IEEE Congress on Evolutionary Computation (
CEC
), Honolulu, HI, May 12–17, pp.
1671
1676
.
33.
Liang
,
J. J.
, and
Suganthan
,
P. N.
,
2005
, “
Dynamic Multi-Swarm Particle Swarm Optimizer With Local Search
,” IEEE Congress on Evolutionary Computation (
CEC
), Vol.
1
, Edinburgh, UK, Sept. 2–5, pp.
522
528
.
You do not currently have access to this content.