The primary motivation in this paper is to understand decision-making in design under competition from both prescriptive and descriptive perspectives. Engineering design is often carried out under competition from other designers or firms, where each competitor invests effort with the hope of getting a contract, attracting customers, or winning a prize. One such scenario of design under competition is crowdsourcing where designers compete for monetary prizes. Within existing literature, such competitive scenarios have been studied using models from contest theory, which are based on assumptions of rationality and equilibrium. Although these models are general enough for different types of contests, they do not address the unique characteristics of design decision-making, e.g., strategies related to the design process, the sequential nature of design decisions, the evolution of strategies, and heterogeneity among designers. In this paper, we address these gaps by developing an analytical model for design under competition, and using it in conjunction with a behavioral experiment to gain insights about how individuals actually make decisions in such scenarios. The contributions of the paper are two-fold. First, a game-theoretic model is presented for sequential design decisions considering the decisions made by other players. Second, an approach for synergistic integration of analytical models with data from behavioral experiments is presented. The proposed approach provides insights such as shift in participants' strategies from exploration to exploitation as they acquire more information, and how they develop beliefs about the quality of their opponents' solutions.

References

References
1.
Moore
,
R. A.
,
Romero
,
D. A.
, and
Paredis
,
C. J. J.
,
2014
, “
Value-Based Global Optimization
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041003
.
2.
Thompson
,
S. C.
, and
Paredis
,
C. J. J.
,
2010
, “
An Investigation Into the Decision Analysis of Design Process Decisions
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121009
.
3.
Panchal
,
J. H.
,
Paredis
,
C. J.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2008
, “
A Value-of-Information Based Approach to Simulation Model Refinement
,”
Eng. Optim.
,
40
(
3
), pp.
223
251
.
4.
Mockus
,
J.
,
1989
, “
The Bayesian Approach to Local Optimization
,”
Bayesian Approach to Global
(Mathematics and Its Applications),
Springer, Dordrecht
,
The Netherlands
.
5.
Panchal
,
J. H.
,
2015
, “
Using Crowds in Engineering Design—Towards a Holistic Framework
,”
International Conference on Engineering Design
(
ICED
), Milan, Italy, July 27–30.https://engineering.purdue.edu/DELP/?q=node/154
6.
Lewis
,
K.
, and
Mistree
,
F.
,
1998
, “
Collaborative, Sequential and Isolated Decisions in Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
643
652
.
7.
Chanron
,
V.
, and
Lewis
,
K.
,
2005
, “
A Study of Convergence in Decentralized Design Processes
,”
Res. Eng. Des.
,
16
(
3
), pp.
133
145
.
8.
Ciucci
,
F.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2011
, “
An Information-Passing Strategy for Achieving Pareto Optimality in the Design of Complex Systems
,”
Res. Eng. Des.
,
23
(
1
), pp.
71
83
.
9.
Takai
,
S.
,
2010
, “
A Game-Theoretic Model of Collaboration in Engineering Design
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051005
.
10.
Fernández
,
M. G.
,
Panchal
,
J. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2005
, “
Concise Interactions and Effective Management of Shared Design Spaces: Moving Beyond Strategic Collaboration Towards Co-Design
,”
ASME
Paper No. DETC2005-85381.
11.
Frischknecht
,
B. D.
,
Whitefoot
,
K.
, and
Papalambros
,
P. Y.
,
2010
, “
On the Suitability of Econometric Demand Models in Design for Market Systems
,”
ASME J. Mech. Des.
,
132
(
12
), p.
121007
.
12.
Fudenberg
,
D.
, and
Tirole
,
J.
,
1991
,
Game Theory
,
MIT Press
,
Cambridge, MA
, (Translated Into Chinese by Renin University Press, China, Beijing).
13.
Skaperdas
,
S.
,
1996
, “
Contest Success Functions
,”
Econ. Theory
,
7
(
2
), pp.
283
290
.
14.
Jia
,
H.
,
Skaperdas
,
S.
, and
Vaidya
,
S.
,
2013
, “
Contest Functions: Theoretical Foundations and Issues in Estimation
,”
Int. J. Ind. Organ.
,
31
(
3
), pp.
211
222
.
15.
Skaperdas
,
S.
,
1998
, “
On the Formation of Alliances in Conflict and Contests
,”
Public Choice
,
96
(
1–2
), pp.
25
42
.
16.
Nash
,
J. F.
,
1950
, “
Equilibrium Points in n-Person Games
,”
Proc. Natl. Acad. Sci.
,
36
(
1
), pp.
48
49
.
17.
Sha
,
Z.
,
Kannan
,
K. N.
, and
Panchal
,
J. H.
,
2015
, “
Behavioral Experimentation and Game Theory in Engineering Systems Design
,”
ASME J. Mech. Des.
,
137
(
5
), p.
051405
.
18.
Konrad
,
K. A.
,
2009
,
Strategy and Dynamics in Contests
,
Oxford University Press
,
New York
.
19.
Taylor
,
C. R.
,
1995
, “
Digging for Golden Carrots: An Analysis of Research Tournaments
,”
Am. Econ. Rev.
,
85
(
4
), pp.
872
890
.http://www.jstor.org/stable/2118237
20.
Fullerton
,
R.
, and
McAfee
,
P.
,
1999
, “
Auctioning Entry Into Tournaments
,”
J. Political Econ.
,
107
(
3
), pp.
573
605
.
21.
Terwiesch
,
C.
, and
Xu
,
Y.
,
2008
, “
Innovation Contests, Open Innovation, and Multiagent Problem Solving
,”
Manage. Sci.
,
54
(
9
), pp.
1529
1543
.
22.
Archak
,
N.
,
2010
, “
Money, Glory and Cheap Talk: Analyzing Strategic Behavior of Contestants in Simultaneous Crowdsourcing Contests on Topcoder.com
,” 19th international Conference on World Wide Web (
WWW
), Raleigh, NC, Apr. 26–30, pp. 21–30.
23.
Boudreau
,
K. J.
,
Lacetera
,
N.
, and
Lakhani
,
K. R.
,
2011
, “
Incentives and Problem Uncertainty in Innovation Contests: An Empirical Analysis
,”
Manage. Sci.
,
57
(
5
), pp.
843
863
.
24.
TopCoder
,
2017
, “Learn About TopCoder,” Topcoder, Indianapolis, IN, accessed July 17, 2017, https://www.topcoder.com/getting-started/
25.
Sheremeta
,
R. M.
,
2011
, “
Contest Design: An Experimental Investigation
,”
Econ. Inquiry
,
49
(
2
), pp.
573
590
.
26.
Tversky
,
A.
, and
Kahneman
,
D.
,
1974
, “
Judgment Under Uncertainty: Heuristics and Biases
,”
Science
,
185
(
4157
), pp.
1124
1131
.
27.
Harrison
,
G. W.
, and
List
,
J. A.
,
2004
, “
Field Experiments
,”
J. Econ. Lit.
,
42
(
4
), pp.
1009
1055
.
28.
Levitt
,
S. D.
, and
List
,
J. A.
,
2009
, “
Field Experiments in Economics: The Past, the Present, and the Future
,”
Eur. Econ. Rev.
,
53
(
1
), pp.
1
18
.
29.
Hirschi
,
N.
, and
Frey
,
D.
,
2002
, “
Cognition and Complexity: An Experiment on the Effect of Coupling in Parameter Design
,”
Res. Eng. Des.
,
13
(
3
), pp.
123
131
.
30.
Grogan
,
P. T.
, and
de Weck
,
O. L.
,
2016
, “
Collaboration and Complexity: An Experiment on the Effect of Multi-Actor Coupled Design
,”
Res. Eng. Des.
,
27
(
3
), pp.
221
235
.
31.
Flager
,
F.
,
Gerber
,
D. J.
, and
Kallman
,
B.
,
2014
, “
Measuring the Impact of Scale and Coupling on Solution Quality for Building Design Problems
,”
Des. Stud.
,
35
(
2
), pp.
180
199
.
32.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2016
, “
Utilizing Markov Chains to Understand Operation Sequencing in Design Tasks
,”
Design Computing and Cognition 2016
,
J. S.
Gero
, ed.,
Springer
,
Cham, Switzerland
, pp.
421
440
.
33.
Yao
,
H.
, and
Ren
,
M. Y.
,
2016
, “
Impressionist: A 3D Peekaboo Game for Crowdsourcing Shape Saliency
,”
ASME
Paper No. DETC2016-60081.
34.
Ren
,
Y.
,
Bayrak
,
A. E.
, and
Papalambros
,
P. Y.
,
2016
, “
EcoRacer: Game-Based Optimal Electric Vehicle Design and Driver Control Using Human Players
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061407
.
35.
Grogan
,
P. T.
, and
de Weck
,
O. L.
,
2015
, “
Interactive Simulation Games to Assess Federated Satellite System Concepts
,”
IEEE Aerospace Conference
(
AERO
), Big Sky, MT, Mar. 7–14, pp. 1–13.
36.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
,
2000
,
Principles of Optimal Design: Modeling and Computation
,
2nd ed.
,
Cambridge University Press
,
New York
.
37.
Fischbacher
,
U.
,
2007
, “
z-Tree: Zurich Toolbox for Ready-Made Economic Experiments
,”
Exp. Econ.
,
10
(
2
), pp.
171
178
.
38.
Mockus
,
J.
,
1989
,
Bayesian Approach to Global Optimization
,
Springer
,
Dordrecht, The Netherlands
.
39.
Kushner
,
H. J.
,
1962
, “
A Versatile Stochastic Model of a Function of Unknown and Time Varying Form
,”
J. Math. Anal. Appl.
,
5
(
1
), pp.
150
167
.
40.
Locatelli
,
M.
,
1997
, “
Bayesian Algorithms for One-Dimensional Global Optimization
,”
J. Global Optim.
,
10
(
1
), pp.
57
76
.
41.
Powell
,
W. B.
, and
Ryzhov
,
I. O.
,
2012
,
Optimal Learning
,
Wiley
,
Hoboken, NJ
.
42.
GrabCAD
,
2016
, “
Airplane Bearing Bracket Challenge
,” GrabCAD, Cambridge, MA, accessed July 1, 2017, https://grabcad.com/challenges/airplane-bearing-bracket-challenge
43.
GrabCAD
,
2013
, “
GE Jet Engine Bracket Challenge
,” GrabCAD, Cambridge, MA, accessed July 1, 2017, https://grabcad.com/challenges/ge-jet-engine-bracket-challenge
44.
McLean
,
R. A.
,
Sanders
,
W. L.
, and
Stroup
,
W. W.
,
1991
, “
A Unified Approach to Mixed Linear Models
,”
Am. Stat.
,
45
(
1
), pp.
54
64
.
45.
Camerer
,
C. F.
,
1997
, “
Progress in Behavioral Game Theory
,”
J. Econ. Perspect.
,
11
(
4
), pp.
167
188
.
46.
Browne
,
G. J.
, and
Pitts
,
M. G.
,
2004
, “
Stopping Rule Use During Information Search in Design Problems
,”
Organ. Behav. Human Decis. Processes
,
95
(
2
), pp.
208
224
.
47.
Hatchuel
,
A.
, and
Weil
,
B.
,
2003
, “
A New Approach of Innovative Design: An Introduction to C-K Theory
,”
International Conference on Engineering Design (ICED)
, Stockholm, Sweden, Aug. 19–21, Paper No.
DS31_1794FPC
.https://www.designsociety.org/publication/24204/a_new_approach_of_innovative_design_an_introduction_to_c-k_theory
48.
Lakhani
,
K. R.
, and
Wolf
,
R.
,
2005
, “
Why Hackers Do What They Do: Understanding Motivation and Effort in Free/Open Source Software Projects
,”
Perspectives on Free and Open Source Software
,
J.
Feller
,
B.
Fitzgerald
,
S.
Hissam
, and
K. R.
Lakhani
, eds.,
MIT Press
,
Cambridge, MA
, pp.
3
22
.
You do not currently have access to this content.