This study compares the potential of the methods of inventive principles (IPR) of TRIZ (MIPT) and BioTRIZ (MIPB) in relation to stimulating creativity in problem solving. The two methods were applied to different issues by groups of undergraduate students. The solutions were evaluated in terms of creativity, which was defined by the criteria of originality and utility. Quantitative analysis provided evidence that the two methods are equal in terms of creative contributions. However, further analyses indicate that the IPs derived from biological systems tend to provide a greater creative contribution compared to those based on technical systems. In addition, it was found that repeated inventive principles (IPR), that is, those indicated more than once by the applied methods, tend to introduce a greater potential for stimulating creativity compared to inventive principles (IPs) indicated only once.

References

1.
Lin
,
H.
,
2009
, “
A Multifunctional System for Supporting Collaborating Works and Decision Making
,”
Inf. Technol. J.
,
8
(
1
), pp.
49
56
.
2.
Sarkar
,
P.
, and
Chakrabarti
,
A.
,
2011
, “
Assessing Design Creativity
,”
Des. Stud.
,
32
(
4
), pp.
348
383
.
3.
Baxter
,
M.
,
1995
,
Product Design: Practical Methods for the Systematic Development of New Products
,
Chapman & Hall
,
London
.
4.
Vargas-Hernandez
,
N.
,
Schmidt
,
L. C.
, and
Okudan
,
G. E.
,
2013
, “
Systematic Ideation Effectiveness Study of Triz
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101009
.
5.
Mann
,
D.
,
2002
,
Hands-On Systematic Innovation
,
CREAX Press
,
Ieper, Belgium
.
6.
Savransky
,
S. D.
,
2000
,
Engineering of Creativity—Introduction to TRIZ Methodology of Inventive Problem Solving
,
CRC Press LLC
,
New York
.
7.
Altshuller
,
G. S.
,
1984
,
Creativity as an Exact Science—The Theory of the Solution of Inventive Problems
,
Gordon & Breach
,
Amsterdam, The Netherlands
.
8.
Cheong
,
H.
, and
Shu
,
L.
,
2013
, “
Using Templates and Mapping Strategies to Support Analogical Transfer in Biomimetic Design
,”
Des. Stud.
,
34
(
6
), pp.
706
728
.
9.
Santulli
,
C.
, and
Langella
,
C.
,
2011
, “
Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience
,”
Int. J. Technol. Des. Educ.
,
21
(
4
), pp.
471
485
.
10.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
.
11.
Mak
,
T. W.
, and
Shu
,
L. H.
,
2008
, “
Using Descriptions of Biological Phenomena for Idea Generation
,”
Res. Eng. Des.
,
19
(
1
), pp.
21
28
.
12.
Benyus
,
J. M.
,
2002
,
Biomimicry: Innovation Inspired by Nature
,
William Morrow Paperbacks
,
New York
.
13.
Vincent
,
J. F. V.
, and
Mann
,
D. L.
,
2002
, “
Systematic Technology Transfer From Biology to Engineering
,”
Philos. Trans. R Soc. London A
,
360
(
1791
), pp.
159
173
.
14.
Chulvi
,
V.
,
González-Cruz
,
M. C.
,
Mulet
,
E.
, and
Aguilar-Zambrano
,
J.
,
2013
, “
Influence of the Type of Idea-Generation Method on the Creativity of Solutions
,”
Res. Eng. Des.
,
24
(
1
), pp.
33
41
.
15.
Linsey
,
J. S.
,
Markman
,
A. B.
, and
Wood
,
K. L.
,
2012
, “
Design by Analogy: A Study of the Wordtree Method for Problem Re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041009
.
16.
Markman
,
A.
,
Wood
,
K.
,
Linsey
,
J.
,
Murphy
,
J.
, and
Laux
,
J.
,
2009
, “
Supporting Innovation by Promoting Analogical Reasoning
,”
Tools for Innovation
,
Oxford University Press
,
New York
.
17.
Viswanathan
,
V. K.
, and
Linsey
,
J. S.
,
2013
, “
Design Fixation and Its Mitigation: A Study on the Role of Expertise
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051008
.
18.
Kohn
,
N. W.
, and
Smith
,
S. M.
,
2011
, “
Collaborative Fixation: Effects of Others' Ideas on Brainstorming
,”
Appl. Cognit. Psychol.
,
25
(
3
), pp.
359
371
.
19.
Daugherty
,
J.
, and
Mentzer
,
N.
,
2008
, “
Analogical Reasoning in the Engineering Design Process and Technology Education Applications
,”
J. Technol. Educ.
,
19
(
2
), pp.
7
21
.
20.
Sifonis
,
C.
,
Chernoff
,
A.
, and
Kolpasky
,
K.
,
2006
, “
Analogy as a Tool for Communicating About Innovation
,”
Int. J. Innovation Technol. Manage.
,
3
(
1
), pp.
1
19
.
21.
Shah
,
J.
,
Kulkarni
,
S.
, and
Vargas-Hernandez
,
N.
,
2000
, “
Evaluation of Idea Generation Methods for Conceptual Design: Effectiveness Metrics and Design of Experiments
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
377
384
.
22.
Howard
,
T. J.
,
Dekoninck
,
E. A.
, and
Culley
,
S. J.
,
2010
, “
The Use of Creative Stimuli at Early Stages of Industrial Product Innovation
,”
Res. Eng. Des.
,
21
(
4
), pp.
263
274
.
23.
Vincent
,
J. F.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
.
24.
Wodehouse
,
A.
, and
Ion
,
W.
,
2012
, “
Augmenting the 6-3-5 Method With Design Information
,”
Res. Eng. Des.
,
23
(
1
), pp.
5
15
.
25.
Le Masson
,
P.
,
Hatchuel
,
A.
, and
Weil
,
B.
,
2011
, “
The Interplay Between Creativity Issues and Design Theories: A New Perspective for Design Management Studies?
,”
Creativity Innovation Manage.
,
20
(
4
), pp.
217
237
.
26.
Ogot
,
M.
, and
Okudan
,
G. E.
,
2006
, “
Integrating Systematic Creativity Into First-Year Engineering Design Curriculum
,”
Int. J. Eng. Educ.
,
22
(
1
), pp.
109
115
.
27.
Ogot
,
M.
, and
Okudan
,
G. E.
,
2006
, “
Systematic Creativity Methods in Engineering Education: A Learning Styles Perspective
,”
Int. J. Eng. Educ.
,
22
(
3
), pp.
566
576
.
28.
Creswell
,
J. W.
,
2009
,
Research Design: Qualitative, Quantitative, and Mixed Methods Approaches
,
Sage Publications
,
London
.
29.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
2007
,
Applied Statistics and Probability for Engineers
,
Wiley
,
New York
.
30.
Vargas-Hernandez
,
N.
,
Shah
,
J. J.
, and
Smith
,
S. M.
,
2010
. “
Understanding Design Ideation Mechanisms Through Multilevel Aligned Empirical Studies
,”
Des. Stud.
,
31
(
4
), pp.
382
410
.
31.
Amabile
,
T. M.
,
1983
, “
The Social Psychology of Creativity: A Componential Conceptualization
,”
J. Pers. Soc. Psychol.
,
45
(
2
), pp.
357
376
.
32.
Hennessey
,
B. A.
, and
Amabile
,
T. M.
,
2010
, “
Creativity
,”
Annu. Rev. Psychol.
,
61
(
1
), pp.
569
598
.
33.
Linsey
,
J. S.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K. L.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041003
.
34.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer Verlag
,
Berlin
.
35.
Ullman
,
D.
,
1992
,
The Mechanical Design Process
,
McGraw-Hill
,
Singapore
.
36.
Pugh
,
S.
,
1991
,
Total Design
,
Addison Wesley
, Wokingham,
UK
.
37.
Dugosh
,
K. L.
,
Paulus
,
P.
,
Roland
,
E. J.
, and
Yang
,
H. C.
,
2000
, “
Cognitive Stimulation in Brainstorming
,”
J. Pers. Soc. Psychol.
,
79
(
5
), pp.
722
735
.
38.
Cohen
,
Y. H.
,
Reich
,
Y.
, and
Greenberg
,
S.
,
2014
, “
Biomimetics: Structure-Function Patterns Approach
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111108
.
39.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
Stone
,
R. B.
,
McAdams
,
D. A.
, and
Shu
,
L. H.
,
2008
, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121102
.
40.
BioTRIZ, 2010, “
BIOTRIZ
,” BioTRIZ Ltd., Trowbridge, Wilts, accessed May 8, 2017, www.biotriz.com
41.
Vasconcelos
,
L. A.
,
Cardoso
,
C. C.
,
Sääksjärvi
,
M.
,
Chen
,
C.-C.
, and
Crilly
,
N.
,
2017
, “
Inspiration and Fixation: The Influences of Example Designs and System Properties in Idea Generation
,”
ASME J. Mech. Des.
,
139
(
3
), p.
031101
.
42.
Oman
,
S. K.
,
Tumer
,
I. Y.
,
Wood
,
K.
, and
Seepersad
,
C.
,
2013
, “
A Comparison of Creativity and Innovation Metrics and Sample Validation Through In-Class Design Projects
,”
Res. Eng. Des.
,
24
(
1
), pp.
65
92
.
43.
Shah
,
J. J.
,
Smith
,
S. M.
, and
Vargas-Hernandez
,
N.
,
2003
, “
Metrics for Measuring Ideation Effectiveness
,”
Des. Stud.
,
24
(
2
), pp.
111
134
.
44.
Mann
,
D.
,
2009
,
Matrix 2010: Re-Updating the TRIZ Contradiction Matrix
,
IFR Press
,
Bidefor, UK
.
You do not currently have access to this content.